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MODELLING AND FORECASTING NIFTY 50 USING HYBRID
ARIMA-GARCH MODEL

PARMINDER KAUR AND RAVI SINGLA

Abstract. This study proposes an estimation technique for developing the best �t ARIMA-
GARCH model to predict the closing values of Nifty 50. The study put forward di¤erent
methods to resolve the issue of non-stationarity in mean as well as variance of the series before
starting the estimation process. This study has applied autoregressive integrated moving-
average (ARIMA), generalized autoregressive conditional heteroscedasticity (GARCH), ex-
ponential GARCH (EGARCH) and threshold GARCH (TGARCH) model along with other
estimation procedures on the daily closing prices of Nifty 50 from Jan 1, 2009 to Dec 30,
2019. Finally, the study identi�es ARIMA(2,1,2)-EGARCH(1,1,1) as best model to predict
the closing prices of Nifty 50. The �ndings indicate that the static forecast provides better
results as compared to the dynamic forecast. These research �ndings will add to the tool
kit of domestic as well as international portfolio managers and investors to frame suitable
NIFTY trade strategies with least possible risks.

1. Introduction

Volatility forecasting is one of the most challenging tasks in the area of �nance. It refers
to make prediction about what is likely to take place in the near future after observing what
has occurred formerly and what is happening at present (Idrees, Alam, and Agarwal 2019).
Over the past two decades, it has gained much attention from academicians, market analysts,
researchers, and consultants as forecasting plays a vital role in all the �nancial applications viz.
portfolio management, risk management, derivatives, hedging and asset allocation (Pati, Barai,
and Rajib 2017). Numerous methods and methodologies are available in the �nancial literature
to predict the volatility based �uctuations (Ratnayaka et al. 2015). Autoregressive integrated
moving average (p,d,q) is one of the most widely used statistical technique for analysing and
forecasting time series data and is also known as Box and Jenkins methodology. This model is
based on past values of the series along with the previous error terms for estimation (Adebiyi,
Adewumi, and Ayo 2014). This model contemplates procedure for varying trend, seasonality,
random noise and also for residual diagnostic and is comparatively more robust and e¤ectual
as compared to other structural models for short term forecasting (Mustapa and Ismail 2019).
Volatility models have also gained considerable attention in the �nancial world after the sem-

inal Nobel Prize winning work of Engle (1982), which for the �rst time modeled the time-varying
conditional variance with ARCH process using past disturbances of the series and allowing the
variance of the error term to vary over time. For such series, recent past data give facts about
one period forecast variance. But, a major limitation of this model is that it looked like a
moving average than auto-regression. Hence, Bollerslev (1986) generalized the ARCH model
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by introducing a more parsimonious model that is generalized autoregressive conditional het-
eroskedasticity (GARCH) model, permitting more �exible lag structure. In ARCH (q) process,
the conditional variance is stated as a linear function of past sample variances only, whereas
the process followed in GARCH (p, q) model permits lagged conditional variances to enter in
the equation as well. ARCH and GARCH are presumed to be the most conspicuous models to
capture the random movement of stock prices and there have been frequent re�nements to this
approach to well capture the stylized features of the �nancial data (Karmakar 2005).
The present study will put forward an estimation technique for developing the best �t

ARIMA-GARCH model to forecast the closing values of Nifty 50. Nifty 50 is National stock
exchange of India�s benchmark broad based stock market index. It is widely used by investors
in India and around the world as a barometer of the Indian capital markets. It covers 12
sectors of the Indian economy and o¤ers investment managers exposure to the Indian market
through a single portfolio. The study has been divided into three stages to achieve its objective
of economic forecasting. First stage deals with the development of an ARIMA (p,d,q) model,
that best �t the movement of Nifty 50 index on the basis of statistically signi�cant coe¢ cients
and least selected information criterion. In the second stage, symmetric as well as asymmetric
GARCH family models are �t to measure the heteroskedasticity in variance of the series and
also to identify the presence of leverage e¤ect. Finally, in the third stage forecasting is done
so as to judge the accuracy of the model and the comparison among the static and dynamic
forecast is made.
The remaining paper is arranged as below; Section 2 presents a brief review of di¤erent

prediction models presented in literature; Section 3 elaborates the time series modelling tech-
niques and the methodology used in the present study; Section 4 demonstrates the quantitative
analysis of the proposed model and the last section highlights the research �ndings.

2. Review of Literature

Numerous studies are available which contribute to the modelling and forecasting of the stock
prices using ARIMA-GARCH model. To begin with, Henry (1998) used daily data of Hong
Kong stock exchange for modelling the asymmetry of the stock market and found that GQARCH
model performs to be the most appropriate model to measure the asymmetry. Similarly, Binder
and Merges (2001) examined how economic forces explained the volatility of stock market
using the standard deviation of S&P Composite Index and concluded that standard deviation
inversely relates to the ratio of projected pro�ts to projected revenues, implying the risk will rise
during economic contractions and fall during economic recoveries. More so, Singla and Pasricha,
(2012) suggested that systematic risk is linearly related to stock�s return during market rises,
but during falls, the relation is non-linear.
Further, Mohammadi and Su (2010) examined the behaviour of oil returns and conditional

variance using weekly data of eleven global markets comprising of oil-exporting and oil- import-
ing countries applying four types of GARCH models. The results indicated that the conditional
standard deviation is more able to capture the volatility in oil returns than the traditional
conditional variance. The study also considered the out-of-sample forecasting measures of
four volatility models such as GARCH, EGARCH, APARCH, FIGARCH and suggested that
MA(1)�APARCH(1,1) model outperforms the others. Similarly, Sopipan (2017) forecasted the
volatility of gold prices using ARIMA - GARCH model using three di¤erent distributions for
the innovations and advocated that ARIMA(2,0,2) gives the best performance for predicting the
gold returns. The study also suggested that the cumulative returns ARIMA (2,0,2)-GARCH
model with normal and GED error distribution outperforms ARIMA (2,0,2)-GARCH-t error
distribution. Mustapa and Ismail (2019) also identi�ed a suitable ARIMA model and �tted
it into GARCH (1,1) model to measure the variability in variance. The results revealed that
ARIMA (2,1,2)-GARCH (1,1) model is considered to be the most suited model for predicting
the S&P500 stock prices and also pointed out that a dynamic forecast gives better prediction
as compared to a static one.



MODELLING AND FORECASTING NIFTY 50 9

Kumar and Dhankar (2010) investigated the asymmetric e¤ect on volatility and stated nega-
tive signi�cant connection among stock returns and conditional volatility. But, the association
between stock yield and standardized residuals was signi�cant. This study also highlighted the
facts that investors modify their investment choices with regard to expected volatility, how-
ever, they expect additional risk premium for the unexpected volatility. One more study by
Kumar and Dhankar (2011) veri�ed the existence of non-linearity, heteroskedasticity and asym-
metric nature of stock returns and reported a positive signi�cant relationship between stock
return and unexpected volatility, inferring investors anticipate more risk premium if there is
any unpredicted rise or drop in stock prices.
In the same way, Xiong and Han (2015) used the Granger causality �MSV model to ex-

amine the volatility spillover and suggested that volatility spillover e¤ects are bi-directional
and asymmetric. Varughese and Mathew (2017) also showed the impact of FPI�s investment
on the Indian stock market volatility and opined that market is more volatile in decreasing
trend rather than in increasing trend. The study results also revealed that there is a signi�cant
contribution of FPI�s purchase and sales in making the stock market volatile. More so, stud-
ies conducted by Natchimuthu and Chellaswamy (2018) and Amudha and Muthukamu (2018)
found the presence of volatility clustering, long term memory features and leverage e¤ect in the
NSE sectoral indices and determine that negative news have more in�uence on the next period
volatility as asymmetrical volatility models beat the symmetrical volatility models. One of the
latest studies by Kaur and Singh (2019) examined the Nifty future index and MCX composite
commodity index and reported persistent volatility in both the markets, though asymmetric
e¤ect was con�rmed only in stock futures market, not in the commodity future market.
Numerous scholars also equated di¤erent ARCH family models to �nd the best �tted model

based on di¤erent information criteria. A study by Banumathy and Azhagaiah (2012) exhibited
GARCH (1,1) is the best possible model to capture the symmetric volatility and for asymmetric
volatility, TGARCH (1,1) to be the more suitable model. Anton (2012) suggested TGARCH
and PGARCH to be the most successful models to forecast volatility. Similarly, Vasudevan and
Vetrivel (2016) recommended that asymmetric models are better as compared to the symmetric
GARCH model. Studies by Amudha and Muthukamu (2018); and Lama et al. (2015) also
proposed that EGARCH model perform better as compared to ARIMA and GARCH models
to capture the volatility.

3. Data and Methodology

The data comprises of 2657 observations of closing prices of Nifty 50 index from the period
Jan. 1, 2009 to Dec. 30, 2019. The data has been retrieved from the o¢ cial website of National
Stock Exchange of India Limited. Further, the study used ARIMA modelling to �nd optimal
mean equation and then added it in the symmetric as well as asymmetric GARCH models to
measure the variability of the series. EViews software version 10 and MS Excel have been used
for conducting the time series analysis.

3.0.1. Identi�cation of suitable model. To begin with, the study observed the nature of the
series by plotting the closing prices of Nifty 50 over time. The graphical presentation of data
has helped to get an overview of the data and also to look at its pattern. Afterwards, Auto-
correlation function (ACF) is used to examine the stationarity of the series. A series is said to
be non-stationary if it�s mean, variance and auto-covariances depend on the time factor and is
said to be stationary if its mean, variance and auto-covariance remains the same over the entire
series such that it satis�es the mean reversion criterion (Bhaumik 2015). ACF exhibits the au-
tocorrelation and partial autocorrelation functions up to the speci�ed order of lags. A series is
considered to be stationary if ACF decays rapidly from the very �rst lag. On the other hand, in
the case of nonstationary, the ACF dies out gradually over time. The stationarity of data is also
examined using a formal test of stationarity, that is, Augmented Dickey Fuller (ADF) test. If
the series is non-stationary then the transformation of the series is done to make it a stationary
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series. If the series follows stochastic trend, then di¤erencing is done to make it stationary and
in case the series follows deterministic trend, then detrending is done to make it a stationary
series. The pattern of the correlogram, that is, ACF function and PACF function is observed
to introduce the AR terms or MA terms in the ARIMA model. To identify the order of p and
q in ARIMA model, trial and error method is applied. Model with signi�cant coe¢ cients, least
information criterion values and highest R2 is selected to get the best parsimonious model.

3.1. Estimating the model parameters. Firstly, ARIMA model has been applied using
least square method. After getting the appropriate mean equation, it has been added in the
GARCH (1, 1) model to measure the variability. Here, the study has split the data series into
two parts; data from Jan 1, 2003 to Nov 30, 2019 for estimating the GARCH parameters and
from Dec 1, 2019 to Dec 30, 2019 to conduct out-of-sample forecasting.
The study used symmetric as well as asymmetric GARCH models. To begin with, ARCH

test is applied to examine the clustering volatility of the series. According to Engle (1982), pre-
dictable volatility depends on the past information or shocks. The ARCH model assumes that
heteroskedasticity observed over di¤erent time periods is autocorrelated or it has an autoregres-
sive structure. Afterwards, GARCH (generalized autoregressive conditional heteroskedasticity)
model, introduced by Bollerslev (1986) is applied, which include the lagged conditional variance
terms as autoregressive terms. The GARCH (p, q) model is written as:

ht = �0 +

pX
i=1

�i "
2
t�1 +

qX
i=1

�i h
2
t�1

Here, the conditional variance of h at time t depends not only on the squared error term
in the previous period (as in ARCH model), but, also on conditional variance of the previous
period. If the conditional variance ht is non negative, it implies that the coe¢ cients �0, �i
and �i are positive numbers. The coe¢ cient �i (ARCH parameter) can be viewed as the news
coe¢ cient. Any increase (decrease) in the ARCH parameter signi�es that news is re�ected in
prices promptly (gradually). It measures the e¤ect of previous day�s market price changes on
today�s price changes. The higher value signi�es that price changes are more in�uenced by
recent news. The coe¢ cient �i (GARCH parameter) can be viewed as the old news coe¢ cient.
Any increase (decrease) in the value of �i signi�es that old news has higher (lesser) persistence
in�uence on the price changes.
The primary purpose of GARCH model is to evaluate the e¤ects of high frequency recent
information (�i) and long-run news shocks (�i). They are also called ARCH e¤ect and GARCH
e¤ect respectively. The sum of �i and �i exhibits the volatility clustering or persistence level.
It implies that large shocks persist against forecasting volatility of the following periods. As �i
+ �i approaches to unity, it indicates that persistence to the shocks of volatility has increased.
Based on the volatility clustering, the trading days with high �uctuation tend to be succeeded
by high volatile trading days. On the other hand, the trading days with low �uctuation tend
to be followed by low volatile trading days.
One of the major restrictions of GARCH model is to give symmetric response of volatility to
good and bad news. However, it has been claimed that negative shocks to �nancial time series
probably cause more volatility than positive shocks of same magnitude (Brooks 2014). This
behaviour of stock return in response to new information �ow is known as asymmetric volatil-
ity (Varughese and Mathew 2017). Hence, the study employed exponential GARCH model,
pioneered by Nelson (1991) using logarithmic expression of the conditional volatility in the
variable, captivating the asymmetric a¢ liation between conditional volatility and conditional
term mean. If the EGARCH asymmetry term is negative and signi�cant, there is leverage
e¤ect, which implies that the stock market volatility is more sensitive to bad news than good
ones. EGARCH model has the following speci�cations:
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If � is statistically signi�cant, there is leverage e¤ect and it indicates that the e¤ect of good and
bad news on volatility is asymmetric. If this coe¢ cient is negative and signi�cant, it implies
that the stock market volatility is more sensitive to bad news than good ones. The coe¢ cient !
measures the reaction of volatility of past time into today�s volatility; this is also called volatility
spillover. The coe¢ cient � measures the e¤ects of past shocks.
The study also applied TGARCH model by Zakoian (1994), to capture the e¤ect of good and
bad news on the volatility. The model speci�cation is as below:

ht = �0 + � ht�1 + �1 "
2
t�1 + � "2t�1 It�1

For TGARCH speci�cation, if the asymmetric term is positive and statistically signi�cant, it
indicates that negative shocks imply a higher next period conditional variance than positive
shocks of same sign. So, there would be asymmetrical impact of good and bad news.
After applying the relevant techniques, it is imperative to measure the accuracy of the applied

model. To achieve this aim of the study, di¤erent diagnostic tools like Ljung-Box Q- statistic
test, AR roots graph and Jarque-Bera normality test are used. If the ARMA model is correctly
speci�ed then the residuals will be white noise. It means there should be no serial correlation
left in the residuals. The roots view shows the inverse roots of the AR and MA characteristics
polynomial. If the ARMA process is (covariance) stationary, then all the AR roots must lie
inside the unit circle. If the estimated ARMA process is invertible, then all the MA roots
should lie inside the unit circle. In order to test the normality of the residuals, the Jarque-Bera
test is applied. Here, the H0 is that residuals follow normal distribution against the alternative
that residuals do not obey normal distribution. However, if these conditions are not satis�ed,
then over�tting is done by adding more parameters in AR and MA terms. After that, the
ARCH e¤ect is veri�ed and if it exists then the variance is heteroskedastic, which leads to the
application of GARCH (1, 1) model to encounter the heterogeneity in variance.
The study has used data from Dec 1, 2019 to Dec 30, 2019 for out-of-sample forecasting

with the help of dynamic and static forecasting techniques. In dynamic forecasting, previously
forecasted values for the lagged dependent variables are used in forming forecasts of the current
value. The static forecast calculates a sequence of one step ahead forecasts, using the actual,
rather than forecasted values for lagged dependent variables. For measuring the forecast accu-
racy, the study used Mean Absolute Error (MAE), Root Mean Square Error (RMSE) criteria
and Theil U2 coe¢ cient (U). MAE measures the average absolute values of the di¤erences
among forecast and actual value, whereas RMSE is the square root of the average of squared
errors. These values have to be least from among all possible ARIMA models that might be
estimated. Theil�s U statistics or Theil�s coe¢ cient of inequality provides a measure of how
well a time series of estimated values compares to a corresponding time series of the observed
value. Hence, it indicates better forecasting performance of the evaluated models; here, the
model is considered to be satisfactory if the value of U is less than 1. The other criteria con-
sidered in the study are bias proportion, variance proportion and covariance proportion. The
bias proportion states how far is the mean of the forecast from the mean of the actual series,
the variance proportion conveys how far is the variance of the forecast from the variation of
the actual series and the covariance proportion measures the residual unsystematic forecasting
error. The forecast is considered to be good if the values of bias and variance proportion are
low and that of covariance proportion is high or near to 1.

3.2. Residual diagnostic. After applying the relevant techniques, it is imperative to measure
the accuracy of the applied model. To achieve this aim of the study, di¤erent diagnostic tools
like Ljung-Box Q- statistic test, AR roots graph and Jarque-Bera normality test are used. If the
ARMA model is correctly speci�ed then the residuals will be white noise. It means there should
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be no serial correlation left in the residuals. The roots view shows the inverse roots of the AR
and MA characteristics polynomial. If the ARMA process is (covariance) stationary, then all
the AR roots must lie inside the unit circle. If the estimated ARMA process is invertible, then
all the MA roots should lie inside the unit circle. In order to test the normality of the residuals,
the Jarque-Bera test is applied. Here, the H0 is that residuals follow normal distribution against
the alternative that residuals do not obey normal distribution. However, if these conditions are
not satis�ed, then over�tting is done by adding more parameters in AR and MA terms. After
that, the ARCH e¤ect is veri�ed and if it exists then the variance is heteroskedastic, which
leads to the application of GARCH (1, 1) model to encounter the heterogeneity in variance.

3.3. Forecasting. The study has used data from Dec 1, 2019 to Dec 30, 2019 for out-of-sample
forecasting with the help of dynamic and static forecasting techniques. In dynamic forecasting,
previously forecasted values for the lagged dependent variables are used in forming forecasts
of the current value. The static forecast calculates a sequence of one step ahead forecasts,
using the actual, rather than forecasted values for lagged dependent variables. For measuring
the forecast accuracy, the study used Mean Absolute Error (MAE), Root Mean Square Error
(RMSE) criteria and Theil U2 coe¢ cient (U). MAE measures the average absolute values of the
di¤erences among forecast and actual value, whereas RMSE is the square root of the average
of squared errors. These values have to be least from among all possible ARIMA models that
might be estimated. Theil�s U statistics or Theil�s coe¢ cient of inequality provides a measure
of how well a time series of estimated values compares to a corresponding time series of the
observed value. Hence, it indicates better forecasting performance of the evaluated models; here,
the model is considered to be satisfactory if the value of U is less than 1. The other criteria
considered in the study are bias proportion, variance proportion and covariance proportion. The
bias proportion states how far is the mean of the forecast from the mean of the actual series,
the variance proportion conveys how far is the variance of the forecast from the variation of
the actual series and the covariance proportion measures the residual unsystematic forecasting
error. The forecast is considered to be good if the values of bias and variance proportion are
low and that of covariance proportion is high or near to 1.

4. Results and Discussion

4.1. Identi�cation of suitable model. The initial view about the stationarity of a series
is made by plotting the series over time. It is obvious from the Figure 1 that the series drift
upwards over time which means the series is non-stationary at level. It is also clear that the
trend is stochastic trend so there is the presence of stochastic non-stationarity. Such a non-
stationarity may be transformed into a stationary process by di¤erencing.

2 , 0 0 0

4 , 0 0 0

6 , 0 0 0

8 , 0 0 0

1 0 , 0 0 0

1 2 , 0 0 0

1 4 , 0 0 0

1 0 1 2 1 4 1 6 1 8

Figure 1. Daily closing prices of Nifty 50 index
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It appears from Figure 2 that the ACF plot is tailing o¤ extremely slowly in a linear way,
signifying the presence of trend and non-stationarity in the series. Di¤erencing is required to
deal with such situation.

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.998 0.998 2649.9 0.000
2 0.996 -0.015 5290.6 0.000
3 0.994 0.017 7922.2 0.000
4 0.992 -0.004 10545. 0.000
5 0.990 -0.016 13158. 0.000
6 0.989 0.001 15762. 0.000
7 0.987 0.000 18357. 0.000
8 0.985 -0.001 20943. 0.000
9 0.983 0.017 23520. 0.000

10 0.981 -0.010 26088. 0.000
11 0.979 -0.005 28647. 0.000
12 0.977 0.008 31197. 0.000
13 0.975 -0.000 33738. 0.000
14 0.973 0.001 36270. 0.000
15 0.971 -0.009 38793. 0.000
16 0.970 0.005 41308. 0.000
17 0.968 -0.004 43814. 0.000
18 0.966 -0.002 46311. 0.000
19 0.964 -0.000 48799. 0.000
20 0.962 -0.004 51278. 0.000

Figure 2. Correlogram of Nifty 50 index

It is obvious from Figure 3 that after di¤erencing the series show no tendency to drift upward
over time, hence the series is mean stationary. But, as the time passes, the gap between the
peaks and troughs increase, so the series is non-stationary in variance.

-6 0 0

-4 0 0

-2 0 0

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 1 2 1 4 1 6 1 8
Figure 3. Nifty 50 index after �rst di¤erencing

A more formal test of stationarity is the ADF unit root test. The results depicted in Table
1 revealed that the series has a unit root. Hence, it is non-stationary at level. On examining
at �rst di¤erence, it is observed that the series is di¤erence stationary or it is I(1). Next, the
model parameters are estimated.
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Table 1. ADF Unit Root Testing
Model Test for unit root at t-statistics Prob.

Trend and intercept Level -2.945037 0.1484
First di¤erence -48.47444 0.0000

4.2. Estimating the model parameters. It is obvious from Figure 2 that the ACF remains
large at all the lags and the PACF cuts after the �rst lag. Hence, the study �rstly used the
simplest models; AR(1), MA(1) and ARIMA(1,1,1). Here, the trial and error method has been
used until a model with all the signi�cant coe¢ cients, least information criterions and highest
adjusted R2 is obtained. Table 2 describes di¤erent models with their diagnosis and clearly
reveals that ARMA (2, 2) is having signi�cant coe¢ cients, least information criterion (AIC)
and highest adjusted R2. It is important to mention that the study has used �rst di¤erence
price series to compare di¤erent models.

Table 2. Comparison of Di¤erent Models
Model Coe¢ cients* AIC SIC HQC Adj. RÂ2

AR(1) Signi�cant 11.40640 11.41305 11.40881 0.002902
MA(1) Signi�cant 11.40633 11.41298 11.40873 0.002974

ARMA(1,1) Not signi�cant 11.40706 11.41592 11.41026 0.002623
AR(2) Not signi�cant 11.40698 11.41585 11.41019 0.002695
MA(2) Not signi�cant 11.40704 11.41590 11.41025 0.002642

ARMA(2,1) Signi�cant 11.40648 11.41756 11.41049 0.003573
ARMA(1,2) Signi�cant 11.40666 11.41774 11.41067 0.003391
ARMA(2,2) Signi�cant 11.40624 11.41953 11.41105 0.004193
AR(3) Not signi�cant 11.40720 11.41828 11.41121 0.002853
MA(3) Not signi�cant 11.40721 11.41829 11.41122 0.002846

ARMA(3,1) Not signi�cant 11.40696 11.42026 11.41177 0.003469
ARMA(1,3) Not signi�cant 11.40703 11.42033 11.41185 0.003398
*Here, coe¢ cients represent all the coe¢ cients in that particular model.

After trial and error process, ARIMA (2,1,2) is considered to be the signi�cant model. Here,
it is crucial to note that MA (1) model is also having signi�cant coe¢ cients, lowest SIC and
HQC criterions, but after considering the value of adjusted R2, ARIMA (2,1,2) is the most
appropriate model as depicted in Table 3.

Table 3. ARIMA (2,1,2) model for Nifty 50 closing prices
Variable Coe¢ cient Std. Error t-Statistic Prob.
C 3.477435 1.407761 2.470189 0.0136

AR(1) 1.386764 0.100154 13.84638 0.0000
AR(2) -0.752803 0.100338 -7.502662 0.0000
MA(1) -1.341983 0.108070 -12.41768 0.0000
MA(2) 0.701844 0.108605 6.462355 0.0000
R-squared 0.006068 Mean dependent var 3.472289

Adjusted R-squared 0.004193 S.D. dependent var 72.61344
S.E. of regression 72.46106 Akaike info criterion 11.40624
Sum squared resid 13914106 Schwarz criterion 11.41953
Log likelihood -15141.49 Hannan-Quinn criterion. 11.41105
F-statistic 3.235633 Durbin-Watson stat 1.973175

Prob(F-statistic) 0.006461 Mean dependent var 3.472289

It is obvious from the Table 3 that all the coe¢ cients are signi�cant as the p-value is less
than 0.05. The value of AIC is lowest and adjusted R2 is highest as compared to the other
models. Therefore, the model is considered to be desirable which can be further diagnosed with
the help of residual diagnosis.
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4.3. Residual Diagnosis. Figure 4 exhibits the correlogram of residuals of the ARIMA (2,1,2)
model which reveals that there are no signi�cant spikes outside the con�dence interval. Hence,
there is no autocorrelation in the series and residuals are independently distributed.

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.013 0.013 0.4781
2 -0.022 -0.022 1.7584
3 -0.005 -0.004 1.8134
4 0.021 0.021 3.0247
5 0.007 0.006 3.1551 0.076
6 -0.016 -0.015 3.8255 0.148
7 0.008 0.009 4.0156 0.260
8 -0.039 -0.040 8.0254 0.091
9 0.021 0.023 9.2528 0.099

10 0.019 0.018 10.243 0.115
11 -0.007 -0.007 10.358 0.169
12 -0.003 -0.000 10.381 0.239
13 -0.011 -0.011 10.692 0.297
14 0.016 0.014 11.368 0.330
15 -0.024 -0.024 12.933 0.298
16 0.010 0.010 13.221 0.353
17 0.018 0.019 14.135 0.364
18 -0.003 -0.003 14.157 0.438
19 0.001 0.002 14.162 0.513
20 -0.007 -0.007 14.290 0.577

Figure 4. Ljung-Box test for ARIMA(2,1,2) model

Model adequacy can also be checked with the help of roots graph. The ARMA process is
invertible if AR roots and MA roots lie inside the unit circle. Figure 5 shows that all the AR
roots and MA roots are laying inside the unit circle. So, the model is adequate and forecasting
is possible with this model.

Figure 5. Graph of AR and MA Roots

It is observed from Figure 6 that the p-value of Jarque-Bera test is less than 0.05, so the
residuals are not normally distributed. Hence, the study will prefer to use Generalized Error
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Distribution (GED) instead of Normal (Gaussian) distribution in the estimation of GARCH
model.

Figure 6. Histogram of the residuals

The heteroscedasticity in variance is con�rmed with the help of ARCH-LM test before �tting
the GARCH (1,1) into ARIMA (2,1,2) model. The results are depicted in Table 4; the p-value
is 0.0000, which is signi�cant at 5% level and con�rms the existence of ARCH e¤ect. It means
volatility clustering is con�rmed. Therefore, symmetric as well as asymmetric ARCH family
models like GARCH, TARCH and EGARCH can be applied.

Table 4. Heteroskedasticity Test
F-statistic 19.63063 Prob. F(1,2653) 0.0000

Obs*R-squared 19.50113 Prob. Chi-Square(1) 0.0000

Table 5 depicts the estimates of ARIMA (2,1,2)-GARCH, TGARCH, EGARCH model. The
estimates of GARCH (1,1) model for closing prices of Nifty 50 show that all the parameters are
positive, thus indicating that the model is well speci�ed to understand the volatility of nifty
returns. The coe¢ cient � (ARCH parameter) can be viewed as news coe¢ cient. The positive
and signi�cant value indicates that news about previous volatility (past squared residual) has
an explanatory power on current volatility. The coe¢ cient of � (GARCH parameter) can be
viewed as an old news coe¢ cient. The positive and signi�cant value indicates that past volatility
has a persistence e¤ect on current volatility. The sum of ARCH and GARCH coe¢ cients (� +
�) is closer to unity (0.985521) which indicates that there is signi�cant persistence in volatility,
thus implying that large changes in prices are likely to be followed by large changes and small
changes in prices are likely to be followed by small changes.

Table 5. Parameters�Estimates of di¤erent ARCH Family Models
Conditional C ARCH GARCH Leverage AIC SBC HQC

volatility model (-1)(�) (-1)(�) e¤ects(1)
GARCH 80.11521 0.053001 0.932520 - 11.27904 11.29912 11.28631

(0.0071) (0.0000) (0.0000)
TGARCH 165.3174 0.010241 0.901739 0.114627 11.26640 11.28871 11.27448

(0.0001) (0.2514) (0.0000) (0.0000)
EGARCH 0.176211 0.125240 0.967737 -0.086140 11.26082 11.28313 11.26890

(0.0052) (0.0000) (0.0000) (0.0000)
*values in parenthesis are the p-values.

The asymmetry terms are positive and highly signi�cant in case of TGARCH speci�cation,
but, negative and highly signi�cant for EGARCH speci�cation which con�rms the existence of
leverage e¤ect in the Indian stock market and implies that bad or negative news has a greater
impact on market volatility than good or positive news. The same result is also con�rmed in
a study conducted by Chuliá, Martens and Dijk, (2010), which proposed that average response
to negative shocks (bad news for stocks) is larger than positive shocks (good news for stocks).
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In order to select the best model from among the di¤erent GARCH family models, the values
of di¤erent coe¢ cients and di¤erent information criteria under di¤erent versions are compared.
It is apparent that the ARIMA(2,1,2)-EGARCH(1,1,1) is the best �t model for Nifty 50 index
prices as the model is having signi�cant coe¢ cients, least AIC (11.26082), SIC (11.28313) and
HQC (11.26890) values. Moreover, these values are also smaller than that the values under
ARIMA(2,1,2) model.

4.4. Forecasting Nifty 50 using the ARIMA(2,1,2)-EGARCH(1,1,1) model. .
The ARIMA(2,1,2) - EGARCH(1,1,1) model is estimated using observations from Jan 1, 2009

to Nov 30, 2019 (2637 observations) and left over observations from Dec 1, 2019 to Dec 30, 2019
are used to conduct out of sample forecasts for Nifty 50 closing prices. The results of static and
dynamic forecast are depicted in Table 6. The values of bias and variance proportion are low
and that of covariance proportion is high, hence the forecasts may be considered satisfactory.
Further, the values of RMSE and MAE are lower in case of static forecast as compared to the
dynamic forecast and Theil U2 coe¢ cient (U) is approximate to 1, which is satisfactory. Hence,
the study concludes that static forecast gives a better prediction of nifty 50 future prices as
compared to the dynamic forecast.

Table 6. The Forecast results on the basis Dynamic Forecast and Static Forecast
Forecast: Dynamic Forecast Forecast: Dynamic Forecast

Actual: Price Actual: Price
Forecast sample: 12/02/2019 to 12/30/2019 Forecast sample: 12/02/2019 to 12/30/2019

Included observations: 20 Included observations: 20
Root Mean Squared Error 118.3482 Root Mean Squared Error 64.72328
Mean Absolute Error 100.3333 Mean Absolute Error 53.62288

Mean Abs. Percent Error 0.829579 Mean Abs. Percent Error 0.444123
Theil Inequality Coe¢ cient 0.004894 Theil Inequality Coe¢ cient 0.002677

Bias Proportion 0.003243 Bias Proportion 0.009831
Theil U2 Coe¢ cient 1.815034 Theil U2 Coe¢ cient 0.994866
Symmetric MAPE 0.829696 Symmetric MAPE 0.444397

Afterwards, the stock prices for the month of Dec, 2019 have been forecasted with the help
of dynamic and static forecast. Table 7 (bext page) depicts the actual value of Nifty 50 closing
prices, the forecast prices and the di¤erence between the actual and forecast values for the
month Dec, 2019. It is apparent that the di¤erence is least in case of static forecast, hence it is
considered to be a satisfactory forecast.

Figure 7. Comparison between the observed and the forecasted stock prices
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The same thing is also depicted graphically in Figure 7, here, on Y axis, there are the actual
values of Nifty 50 closing prices with the forecasted values of Nifty 50 using static and dynamic
forecast for the month of Dec, 2019, signifying the fact that the static forecast moves in line
with the actual series, whereas the pattern of dynamic model is directional. The results of
RMSE, MAE and TIC also exhibit similar results.

Table 7. Comparison between the observed and the forecasted stock prices
Date Observation (O) Dynamic forecast Static forecast Di¤erence Di¤erence

value, (D) value, (S) = O - D = O - D
12-02-2019 12048.2 12053.01 12053.01 -4.80769 -4.80769
12-03-2019 11994.2 12055.06 12049.94 -60.8586 -55.739
12-04-2019 12043.2 12060.02 11995.51 -16.8213 47.68641
12-05-2019 12018.4 12063.97 12049.93 -45.5668 -31.5291
12-06-2019 11921.5 12067.2 12020.73 -145.7 -99.2278
12-09-2019 11937.5 12070.63 11917.7 -133.131 19.80012
12-10-2019 11856.8 12074.23 11941.88 -217.433 -85.0783
12-11-2019 11910.15 12077.8 11856.6 -167.648 53.54924
12-12-2019 11971.8 12081.32 11916.48 -109.523 55.3218
12/13/2019 12086.7 12084.85 11980.11 1.846314 106.5912
12/16/2019 12053.95 12088.39 12096.95 -34.4442 -43.0029
12/17/2019 12165 12091.93 12054.33 73.06616 110.6714
12/18/2019 12221.65 12095.47 12173.88 126.1788 47.77033
12/19/2019 12259.7 12099.01 12229.67 160.6913 30.02968
12/20/2019 12271.8 12102.55 12264.36 169.2533 7.436532
12/23/2019 12262.75 12106.08 12274.97 156.6653 -12.2151
12/24/2019 12214.55 12109.62 12265.25 104.9275 -50.6984
12/26/2019 12126.55 12113.16 12214.79 13.38959 -88.2382
12/27/2019 12245.8 12116.7 12124.25 129.1017 121.5463
12/30/2019 12255.85 12120.24 12257.37 135.6138 -1.51824

5. Conclusion

The present study suggest the estimation process for developing the best �tted ARIMA-
GARCH model to forecast the values of Nifty 50 closing prices. Numerous methods are put
forward to solve the non-stationarity in mean and variance of the series before beginning the
estimation process. Then, ARIMA modelling is used to �nd optimal mean equation, which is
further added in the GARCH model to measure the variability of the series. In order to capture
the leverage e¤ect, EGARCH and TGARCH models are applied. For selecting the best model
from among the di¤erent GARCH models, the values of di¤erent coe¢ cients and information
criteria under di¤erent versions are compared and ARIMA(2,1,2)-EGARCH(1,1,1) is selected
as the best �t model for forecasting Nifty 50 stock prices. Finally, the empirical results reveal
that static forecast gives better prediction of Nifty 50 closing prices as compared to the dynamic
forecast.
However, this study was restricted only to short-term forecasts. For further studies, other

volatility models such as GJR-GARCH or QGARCH can be considered with Markov regime
switching model. Researchers can also use Hybrid ANN-ARIMA model to achieve better fore-
cast. Finally, it is supposed that present study will de�nitely provide good insights to the
investors and portfolio managers and would help them to make better portfolio decision.
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