Multivariate VaR: A Romanian Market study

Andrei Rusu

back

References:

[1] Abad, P., Benito, S. and Lopez, C. (2014) A comprehensive review of value at risk methodologies, The Spanish Review of Financial Economics, Vol. 12, No. 1, 15–32.

[2] Al Janabi, M. A. M., Ferrer, R., Shahzad, S.J.H., (2019). Liquidity-adjusted value-at-risk optimization of a multi-asset portfolio using a vine copula approach. Physica A, Vol. 536, Article No. 122579. Available on-line at: https://doi.org/10.1016/j.physa.2019.122579

[3] Artzner, P., Delbaen, F., Eber, J.M. and Heath, D. (1999). Coherent measures of risk. Mathematical Finance, Vol. 9, No.3, 203–228.

[4] Babat, O., Vera, J. C., and Zuloaga, L. F., (2017). Computing near-optimal Value-at-Risk portfolios using Integer Programming techniques. European Journal of Operational Research, Vol 226, No. 1, 304-315.

[5] Banihashemi, S., Navidi, S. (2017). Portfolio performance evaluation in Mean-CVaR framework: A comparison with non-parametric methods value at risk in Mean-VaR analysis. Operations Research Prespective, Vol. 4, 21-28.

[6] Barone-Adesi, G., Giannopoulos, K. and Vosper, L. (1999). VaR without correlations for nonlinear portfolios. Journal of Futures Markets, Vol. 19, No. 5, 583–602.

[7] Bollerslev, T., (1986). Generalized autoregressive heteroskedasticity. Journal of Econometrics, Vol. 31, No. 3, 307–327

[8] Boudt, K., Peterson, B. and Croux, C., (2008). Estimation and decomposition of downside risk for portfolios with non-normal returns. Journal of Risk, Vol. 11, No. 2, 79-103.

[9] Cappiello, L., Engle, R.F. and Sheppard, K. (2006). Asymmetric dynamics in the correlations of global equity and bond returns. Journal of Financial Econometrics, Vol. 4, No. 4, 537–572.

[10] Christoffersen, P. (1998). Evaluating interval forecasts. International Economic Review, Vol. 39, No. 4, 841–862.

[11] Daníelsson, J., Jorgensen, B. N., Samorodnitsky, G., Sarma, M., de Vries, C. G. (2012). Fat tails, VaR and subadditivity. Journal of Econometrics, Vol. 172, No. 2, 283-291.

[12] Ding, Z., Granger, C.W.J. and Engle, R.F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, Vol. 1, No. 1, 83-106.

[13] Engle, R.F. and Sheppard, K. (2001). Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH. NBER Working Paper, available on-line at https://www.nber.org/papers/w8554.pdf

[14] Engle, R.F. and Manganelli, S. (2004). CaViaR: conditional autoregressive value at risk by regression quantiles. Journal of Business and Economic Statistics, Vol. 22, No. 4, 367–381.

[15] Favre, L. and Galeano. J., (2002). Mean-Modified Value-at-Risk Optimization with Hedge Funds. Journal of Alternative Investment, Vol 5, No. 2, 21-25.

[16] Glasserman, P. (2005). Measuring marginal risk contributions in credit portfolios. Journal of Computational Finance, Vol. 9, No. 2, 1-41.

[17] Glasserman, P., and Li, J. (2005). Importance sampling for portfolio credit risk. Management Science Vol. 51, No. 11, 1643–1656.

[18] Gonzalez-Rivera G., Lee T. H. and Mishra, S. (2004). Forecasting Volatility: A Reality Check Based on Option Pricing, Utility Function, Value-at-Risk, and Predictive Likelihood. International Journal of Forecasting, Vol. 20, No. 4, 629-645.

[19] Hafner, C. M. and Preminger, A. (2010). Deciding between GARCH and stochastic volatility via strong decision rules, Journal of Statistical Planning and Inference, Vol. 140, No. 3, 791-805.

[20] Hallerbach, W. G. (2002). Decomposing Portfolio Value-at-Risk: A General Analysis. Journal of Risk, Vol. 5, No. 2, 1-18.

[21] Halkos, G. E., Tsirivis, A. S. (2019). Value-at-risk methodologies for effective energy portfolio risk management. Economic Analysis and Policy, Vol. 62, 197-212.

[22] Jain, S. and Chakrabarty, S. P. (2019). Does Marginal VaR Lead to Improved Performance of Managed Portfolios: A Study of S&P BSE 100 and S&P BSE 200. Asia-Pacific Financial Markets, available online at: https://doi.org/10.1007/s10690-019-09294-0

[23] Jang, B-G., Park, S. (2016). Ambiguity and Optimal Portfolio Choice with Value-at-Risk Constraint. Finance Research Letters, Vol 18, 158-176.

[24] Kellner, D. and Rösch, D. (2016). Quantifying market risk with Value-at-Risk or Expected Shortfall? – Consequences for capital requirements and model risk. Journal of Economic Dynamics and Control, Vol. 68, 45-63.

[25] Kim, T., Manganelli, S. and White, H. (2015). VAR-for-VaR: Measuring Tail Dependence Using Multivariate Regression Quantiles. Journal of Econometrics, Vol. 187, No. 1, 169-188.

[26] Krause, J. and Paolella, M. S. (2014). A Fast, Accurate Method for Value-at-Risk and Expected Shortfall, Econometrics , Vol. 2, No. 2, 98-122; available on-line at https://doi.org/10.3390/econometrics2020098

[27] Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives, Vol. 3, No. 2, 73-84.

[28] Le, T.H. (2020). Forecasting value at risk and expected shortfall with mixed data sampling International Journal of Forecasting, available on-line at https://doi.org/10.1016/j.ijforecast.2020.01.008

[29] Lu, X. F., Lai, K. K., and Liang, L. (2014). Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model. Annals of Operation Research, Vol. 219, 333–357 .

[30] Martellini, L. and Ziemann, V. (2010). Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection. The Review of Financial Studies, Vol. 23, No. 4, 1467–1502.

[31] Martin, R..D. and Arora, R. (2017). Inefficiency and bias of modified value-at-risk and expected shortfall. Journal of Risk, Vol. 19, No. 6, 59-84.

[32] Mina, J. and Xiao, J. Y. (2001), Return to RiskMetrics: The Evolution of a Standard. New York, available online at: https://www.msci.com/documents/10199/dbb975aa-5dc2-4441-aa2d-ae34ab5f0945

[33] Morgan, J.P., (1996). Riskmetrics Technical Document, 4th ed. J.P. Morgan, New York.

[34] Rau-Bredow, H. (2002). Value at Risk, Expected Shortfall, and Marginal Risk Contribution, in Szego, G., Risk Measures for the 21st Century, pp. 61-68, Wiley.

[35] Silahli, B., Dingec K. D., Cifter, A., Aydin, N. (2019). Portfolio value-at-risk with two-sided Weibull distribution: Evidence from cryptocurrency markets. Finance Research Letters, available on-line at: https://doi.org/10.1016/j.frl.2019.101425

[36] Su, Q., Qin, Z., Peng, L., Qin, G., (2020). Efficiently Backtesting Conditional Value-at-Risk and Conditional Expected Shortfall, Journal of the American Statistical Association, available on-line at https://doi.org/10.1080/01621459.2020.1763804

[37] Taylor, J.W. (2020), Forecast combinations for value at risk and expected shortfall, International Journal of Forecasting, Vol. 36, No. 2, 428-441.

[38] Yamai, Y. and Yoshiba, T. (2002), Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization. Monetary and Economic studies, Vol. 20, No. 1, 87-121.

Copyright © 2009 | All rights reserved