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EVALUATING AN INVESTMENT PROJECT IN AN INCOMPLETE
MARKET

GEORGE YUNGCHIH WANG

Abstract. Many studies on real options base their arguments upon the assumption that
security market is complete to apply the risk-neutral valuation technique. However, when
the market is incomplete, in which investment risk is not spanned by existing assets, the
investor’s preferences are not risk-neutral, or management is refrained from certain trading
strategies, there may exist no unique martingale price of uncertain income streams. In this
paper, a dynamic-programming framework for maximizing expected utility of an investor in
discrete time is presented to evaluate an investment opportunity in an incomplete market.
It is suggested that certainty equivalent (CE) could be applied to value such an investment
opportunity. We show that two approaches to certainty equivalent, i.e., the buying price and
the selling price approaches, are exactly equal in exponential utility, implying that CE is a
fair value for both the buyer and the seller in an incomplete market, subject to the degree of
risk aversion. Therefore, the proposed approach, compared to other alternative approaches,
is relatively intuitive and easy to apply. With the classic investment problem, it is shown
that the option embedded in a project is crucial in decision-making.

1. Introduction

The valuation of an irreversible investment project is a crucial topic in the field of finance and
project management. Over the last three decades, real options theory has become the dominant
focus of capital investment theory. Many real options models for evaluating capital investments
explicitly and implicitly assume that the security market is complete to hedge away investment
uncertainties in order to apply the risk-neutral valuation technique. This is equivalently to
imply the assumption of the no-arbitrage principle, under which all securities have the same
expected rate of return, namely, the riskless rate.
A complete market, by definition, describes the situation in that the payoffs of the focus asset

can be perfectly replicated or ‘spanned’by a single marketed asset (also called a twin asset) or
an equivalent portfolio of securities. Under the complete market assumption, investors are able
to hedge away the price risks of the focus asset in all states by dynamically trading marketed
securities, and thus adopt the market’s risk-neutral probabilities as their own to identify a
unique no-arbitrage price or an equivalent martingale measure (see Harrison and Kreps, 1979),
which is also known as risk-neutral valuation. The replicating portfolio approach originates
from the seminal studies by Black and Scholes (1973) and Merton (1973) in valuing European
options in continuous time and further advanced by Cox, Ross and Rubinstein (1979) and
Rendleman and Bartter (1979) who value financial options with a binomial lattice in discrete
time.
Market completeness is not readily obtained when the market has no suffi cient securities to
hedge away price risk. The risk-neutral probability measure in an incomplete market is thus
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not unique to such an extent that the price of a contingent claim falls between the price bounds
of the infimum and the supremum, which are determined from a collection of all available
equivalent martingale measures.1 Since risk-neutral valuation techniques cannot determine a
unique measure for pricing a contingent claim in the relaxation of market completeness, recent
research is thus directed at incorporating individual’s risk preference and objective probability
measures into the valuation framework of utility maximization.2 Therefore, the valuation of
income streams in an incomplete market may rely on the calculations of a certainty equivalent
(CE) value either from the buying price approach or the selling price approach.3

This paper, drawn from the research on asset pricing in utility maximization frameworks,
aims to develop a dynamic programming model for evaluating income streams generated from
an investment project in an incomplete market in a discrete-time, discrete-space fashion. This
paper postulates that the recursive structures of utility maximization over terminal wealth could
be explicitly solved in order to evaluate income streams generated from an investment project
in an incomplete market. Since the risk of income streams in an incomplete market could not
be completely hedged away with existing traded securities, the concept of certainty equivalent,
also known as the delta property, is introduced to evaluate an investment opportunity. The
delta property states that the investor is indifferent between receiving uncertain cash flows and
a certain amount.4 By applying the delta property to utility maximization, we show that the
certainty equivalent derived from the buying price approach is equal to that derived from the
selling price approach when the utility function has a delta property. This equality relationship
indicates that the certainty equivalent is a fair price for income streams should both of the
buyer and the seller have the same risk attitude. Therefore, the approach proposed in this
paper, compared to the other models, is relatively intuitive and easy to apply. In addition, by
using this methodology, management would avoid to make an arbitrage estimate in risk-adjusted
discount rate and thus reduce the chance of making mistaken decisions.
The rest of the paper is organized as follows: Section 2 reviews the literature on asset pricing

in an incomplete market. Section 3 describes the dynamic programming framework, including
the model specifications and the derivation of recursive structures. Numerical techniques are
also developed to tackle the computation problem in the utility function. In Section 4, we extend
the original problem to maximizing expected utility over consumptions over time with/out
terminal wealth. In addition, we also propose a method to measure market completeness.
Section 5 presents a classic investment problem in the context of real options. Since the same
investment problem has been illustrated in many other papers, it is thus convenient to compare
the different approaches to valuation. We then solve the classic investment problem with the
proposed model and numerical techniques in comparison to traditional discounted cash flow
(DCF) approach. Section 6 provides concluding remarks.

2. Literature Review

Since the seminal work in Black and Scholes (1973), most options models along the line of
research implicitly or explicitly assume the existence of a complete market which allows for
a perfect hedging to eliminate all the states of uncertainty of contingent claims. Harrison
and Kreps (1979) consider this fundamental issue of arbitrage argument and find that in a
complete market one may construct a risk-neutral probability measure from a linear state-
price function for deriving a unique discounted asset price or a martingale. The risk-neutral
probability measure, for this reason, is called the equivalent martingale measure. They also

1El-Karoui and Quenez (1995).
2See Smith and Nau (1995), Pliska (1997), and Smith (1998).
3The buying price is defined as the lump-sum present payment, made by the buyer, which makes expected

utility with the project equal to expected utility without the project. The selling price is referred to as the
added-in certainty equivalent, received by the seller, which makes expected utility without the project equal to
expected utility with the project. See Smith and Nau (1995).

4See also the discussions in Howard (1971) and Luenberger (1998, Ch. 16).
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make it clear that if the market is complete, the number of traded assets must be greater than
or at least equal to the number of the states of the world. In an infinite-state world with no
arbitrage opportunities allowed, Kreps (1981) shows how the martingale property of a price
system can be determined in individual’s expected utility representation. Duffi e and Huang
(1985) demonstrate that the martingale property may be effectively reached with dynamic
spanning in infinite states and in continuous time with only a few long-lived securities. Sharing
the same spirit from earlier studies, Nau and McCardle (1991) postulate that the martingale
price in conventional option pricing models may be still valid as long as the no-arbitrage principle
holds. Under the no-arbitrage condition, the technique of expected utility maximization may be
introduced into the pricing. It is shown that the result in the no-arbitrage principle is effectively
equivalent to that under the complete-market assumption except less information required.
Empirical evidence suggests that financial markets in reality are incomplete and thus im-

peding no-arbitrage pricing for a number of reasons. The first reason of market incompleteness
is mainly caused by trading frictions such as transaction costs. (Aiyagari and Gertler, 1991;
Aiyagari, 1993) Furthermore, model risk involved in risk management typically indicates a fail-
ure of market completeness. (Figlewski, 1998) Figlewski discusses several sources of model risk
facing derivative traders, the misspecification of trading models, the diffi culty of estimating
input parameters, and the infeasibility of practical delta hedging. Green and Figlewski (2001)
demonstrate that even though an institution uses an optimal delta hedging ratio as well as a
correct volatility forecast in an attempt to hedge away the risk of writing an option, the firm
still exposes a considerable risk to the financial market because of model risk, thus providing
strong evidence for market incompleteness. Recently, Hugonnier and Morellec (2007) state an
incomplete market, in addition to the insuffi ciency of existing assets, also involves management
restrictions in that corporate executives are refrained from certain trading strategies. It is
demonstrated that risk aversion may induce management to expedite investment, leading to an
erosion of option value.
The main impediment to investment valuation in an incomplete market is that not all contin-

gent claims are attainable with the replication of existing marketed securities, and, even though
they are, there may not exist a unique equivalent martingale measure for the contingent claim
in question. El-Karoui and Quenez (1995) find that the collection of all available equivalent
martingale measures in the state space would form an interval of price bounds between the
infimum and the supremum, both of which are also defined as the bid-ask spread to include all
the possible prices in an incomplete market. The infimum, F−t , and the supremum, F

+
t , are

expressed as follows, respectively:

F−t = inf
[
EQt (FT )

]
(1)

F+
t = sup

[
EQt (FT )

]
(2)

where EQt (FT ) denotes the expected value of the contingent claim at time t expired at time T.
with Q representing all the available equivalent martingale measures in an incomplete market.
(See also Pliska, 1997)
Some early financial economists, in fact, may have noticed the pricing problem in an incom-

plete market, but mostly they adjust the drift rate of underlying assets in order to continue
assuming complete market. For example, Brennan and Schwartz (1982) and Cox, Ingersoll, and
Ross (1985) adjust the drift rate of each stochastic process by an amount of a process-specific
risk premium where the risk premium is derived from the equilibrium model of financial markets.
By this justification, the security market is seen as if it is complete.
To tackle the diffi culty of pricing contingent claims in an incomplete market, El-Karoui and

Quenez (1995) describe a superhedging technique that the seller may purchase a replicating
portfolio at the supremum price to hedge the contingent claim and lock in a profit. The
problem of such a technique is that the superhedging strategies may require a large amount of
initial capital, which becomes a dilemma for the investors who are unwilling to put in the initial
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capital. Follmer and Leukert (1999) propose an alternative technique called quantile hedging
by constructing a hedging strategy which maximizes the probability of a successful hedge under
the objective probability measure, given a constraint on the required cost. Another alternative
technique is called good-deal pricing, proposed by Cochrane and Saa-Requejo (2000) and Cerny
and Hodges (2000). The basic intuition of good-deal pricing is that investors not only exploit
all the arbitrage opportunities but also search for hedging the opportunities of good deals,
expressed by assets with a high Sharpe ratio. Implementing the good-deal hedging would
greatly shrink the price bounds in an incomplete market.
Another approach to asset pricing in an incomplete market is proposed by Smith and Nau

(1995), who integrate the utility maximization technique and the decision tree analysis to eval-
uate an investment opportunity. They assume that project uncertainties can be classified into
market uncertainty (or price uncertainty) and private uncertainty (or technological uncertainty);
the former can be fully resolved by the market with a unique risk-neutral probability measure
and the latter is resolved with a risk-adjusted probability measure. The utility maximization
technique is then introduced to the framework to explicitly model investor’s risk preference.
This particular assumption of uncertainty makes the integrated framework become a special
case in the incomplete-market pricing. Furthermore, similar to Nau and McCardle (1991),
Smith and Nau assume that investor’s objective is to maximize expected utility over termi-
nal wealth only. However, if investor’s fundamental preference is for consumption, we should
maximize expected utility over consumption rather than terminal wealth. Smith (1998) takes
consumption streams into the optimization framework, yet he still makes the same specific as-
sumption regarding project uncertainty as in Smith and Nau (1995). Staum (2004) develops
a method of marginal indifference pricing which provides a unique price based on expected
utility in the absence of exact hedging replication, but the methodology may be subject to
model misspecification. Recently, Pyo (2008) explores the real option problem in an incomplete
market within a hyperbolic absolute risk aversion (HARA) utility function to derive narrower
price bounds.

While the above line of research attempts to form a hedging strategy to price a contingent
claim in an incomplete market, other researchers in real options focus on searching for highly
correlated marketed assets to complete the market. For example, Teisberg (1995) suggests to
identify a twin asset by choosing the publicly traded firms whose projects are similar to those of
interest. Alternatively, a portfolio of traded assets or cash flows of a completed project can be
treated as a twin asset. A similar idea to the twin asset, proposed by Sick (1995), is termed the
Hotelling valuation principle which introduces a highly correlated commodity. In principle, the
Hotelling valuation implies that the unit value of exhaustible natural resources can be written
as a function of its current price, net of extraction cost; other variables like interest rate have no
additional explanatory power. With the Hotelling valuation principle, we can relate the value
of an underlying asset to the spot (or future) price of a certain correlated commodity and use
it as the underlying asset. However, the problem of these methods arises when practitioners in
reality find it so diffi cult to discover the highly correlated assets with the same risk profile as
the investment project in question.
Copeland, Koller, and Murrin (2000) and Copeland and Antikarov (2001)5 suggest the Mar-

keted Asset Disclaimer (MAD) assumption, which states that the present value of the project
itself, without flexibility, is the best unbiased estimator of the market value of the project if it
should be traded on the market. Since the project without flexibility is assumed to be highly
correlated with the project with flexibility, no other securities on the market can make a better
twin asset than it is. The intuition behind the MAD assumption is easily understood, but what
makes it diffi cult to apply is that securities markets are assumed to be complete such that the
payoffs of the project with no flexibility can also be replicated by the stocks. If the twin assets
do not exist in reality, theoretically fictitious securities could also be introduced to complete

5See Copeland et al. (2000), pp. 406-407; Copeland and Antikarov (2001), pp. 94-95.
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the model and then impose the restrictions to prohibit investors from holding any positions
in the fictitious securities. (Pliska, 1997) The major drawback in conducting the technique of
fictitious securities is that this technique becomes computationally expensive as the number of
states of the world is very large and there are only a few marketed securities available.
The idea of evaluating uncertain income streams in an incomplete market by a CE value has

long been adopted theoretically and empirically in finance literature. For instance, Silvers (1973)
examined the placecountry-regionU.S. investment-grade bond prices for the period of 1952-1964
within the utility-maximization framework and found empirical support for certainty equivalent.
Jacque (1980) suggested an expected utility framework for foreign exchange decisions. With the
data of US foreign exchange rates, she derived an explicit relationship between the level of risk
aversion and the CE value. In addition, O’Brien (1992) used the idea of CE to test the empirical
validity of the preference-inducing technique and found that most transactions were individually
rational with respect to their predicted CEs. More recently, Hagstromer, Anderson, Binner,
Elger, and Nilsson (2008) used a portfolio choice setting of three country-regionplaceUK indices
to identify CEs in several utility functions. Furthermore, Fugazza, Guidolin, and Nicodano
(2009) found that diversification into real estate investments (REITs) increases both the Sharpe
ratio and the CE of wealth for all investment horizons.
In addition to evaluating investor’s wealth in stock markets, certainty equivalence was also

found empirical support for stochastic commodity prices. For example, Valenzuela and Mazum-
dar (2003) applied the CE idea to evaluate the option of trading electricity at market prices.
Serra, Goodwin, and Featherstone (2011) applied an expected utility model to empirically eval-
uate farmer’s CE and the risk-related effect s of farm policy changes at the intensive margin of
production.
Building on the approach of dynamic programming, this paper further extends the idea of utility
maximization in Wang (2010) to the objective of maximizing expected utility over consumption
with/out terminal wealth in an incomplete market. Wang (2010) dealt with the problem of
investment evaluation under the assumption that the objective of a decision-maker is to maxi-
mize expected utility over terminal wealth while this paper relaxed the assumption to a more
realistic case in which the decision-maker aims to maximizing expected utility over consumption
with/out terminal wealth. Furthermore, we develop a technique of applying the coeffi cient of
correlation to measure market incompleteness in this paper.

3. Methodology

3.1. Model Specifications. Suppose a finite sample space, Ω , exists with k(k < ∞) ,
elements, Ω = {ω1 , ω2 , ..., ωk}, where ω , denotes the state of the world. All the investments
and consumptions take place at time t = {0 , 1 , ...,T}. There is a probability measure P on Ω,
with P(ω) ≥ 0 for all ωεΩ and

∑k
i=1 P (ωi) = 1.

Securities markets are assumed to be frictionless to such an extent that the investor can
trade any amount of shares of a security at a market price without incurring any transaction
cost. S denotes a security price process, S = {Snt : t = 0, 1, ...T ;n =0, 1, ...,N }, where S is a
security matrix and Snt is a scalar representing the price of security n at time t . Among all the
securities, S 0 denotes a risk-free security vector while the others denote risky security vectors.
Let θ be a vector of trading strategies, θ = {θnt : t = 0, 1, ...T ;n = 0, 1, ...N} , in the investor’s
portfolio where the scalar θnt represents the units of security n held between time t and t + 1
and the scalar θ0

t is the dollar amount invested S
0
t in from time t to t + 1 at a risk-free rate, r .

In addition, x denotes a security return process, x ={xnt : t = 0, 1, ..., T ;n = 0, 1, ..., N} , where
xnt is the return of security n from time t − 1 to time t .
Investor’s wealth is denoted by a value process, V ={Vt : t = 0, 1, ..., T} , which represents

the total value of the portfolio at time t . The consumption plans, C ={Ct : t = 0, 1, ..., T} ,
are a non-negative stochastic process with Ct representing the amount of funds consumed by
the investor at time t . Note that the consumption process is admissible when Ct ≤ Vt. Also,



60 GEORGE YUNGCHIH WANG

at the end of the intended time horizon, all the terminal wealth is consumed so that CT = VT .
Suppose there is a process of cash streams, H ={Ht : t = 0, 1, ...T} where Ht(ω) denotes income
streams at time t and state ω. Therefore, the wealth, Vt(ω)(∀ωεΩ, t ≥ 1), can be expressed as
follows:

Vt (ω) = (Vt−1 − Ct−1) (1 + r) + θt−1St (ω) [xt (ω)− r] +Ht (ω) , ∀ω ∈ Ω6 (3)

where r is risk-free rate and xt (ω) = St(ω)−St−1
St−1

.
If there is no consumption over time, Equation (3) can be modified as follows:

Vt(ω) = Vt−1(1 + r) + θt−1St(ω)[xt(ω)− r] +Ht(ω),∀ωεΩ7 (4)

When securities markets are pronounced complete, it is equivalent to assuming the existence
of the no-arbitrage condition. This means there is no arbitrage opportunity so that the investor
cannot profit from trading securities without taking some risk or spending some capital. An
alternative setup of this no-arbitrage condition is to regard the existence of risk-neutral prob-
abilities. The law of one price permits us to derive exactly one set of risk neutral probability
measures8. Let Q represent a risk-neutral probability measure on Ω , with Q(ω) for all ωεΩ
. Securities markets are arbitrage-free if and only if a strictly positive risk-neutral probability
measure exists in the following way:

S0 =

∑
ω∈ΩQ (ω)St (ω)

(1 + r)t
=

EQSt
(1 + r)t

, (5)

By contrast, there is no unique risk-neutral probability measure in an incomplete market so
that Equation (5) can be modified as follows:

S0 =

∑
ω∈ΩQ

m (ω)St (ω)

(1 + r)t
=

EQmSt
(1 + r)t

(6)

where m denotes the finite sets of risk-neutral probability measures.
For time period t , the market is incomplete if N+1 < k , meaning that existing marketed

securities cannot replicate the payoffs of a contingent claim for all the states of the world. In a
matrix form, we cannot solve the following system of linear equations for a unique solution of
θ: 

(1 + r) S1 (ω1) · · · SN (ω1)
(1 + r) S1 (ω2) · · · SN (ω2)
...

...
...

...
(1 + r) S1 (ωk) · · · SN (ωk)

×


θ0

θ1

...
θN

 6=

H (ω1)
H (ω2)
...

H (ωk)

 if N + 1 < k (7)

In the context of investment valuations, an investment opportunity in complete market is
seen as a redundant asset so that its payoffs can be fairly replicated with existing marketed
securities. However, in incomplete market, the payoffs of the investment opportunity cannot be
completely hedged away with the marketed securities so that replicating residuals must exist
for at least one state of uncertainty. Let ε denote a vector of replicating residuals in that the
scalar εt(ω) denote the replicating residual at time t for all ωεΩ. Thus, the income streams
generated from the investment opportunity can be expressed as follows:

Ht (ω) = θ0
t−1 (1 + r) +

N∑
i=1

θit−1S
i
t (ω) + εt (ω) , ∀ω ∈ Ω (8)

6If there are no cash streams, Equation (3) becomes the following form: Vt(ω) = (Vt−1 − Ct−1) (1 + r) +

θt−1St(ω)[xt(ω)− r].
7If there are no cash streams, Equation (4) becomes the following form: Vt(ω) = Vt−1(1 + r) +

θt−1St(ω)[xt(ω)− r].
8Pliska (1997).
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n complete markets, only one set of trading strategies can fully hedge the income streams so
that εt(ω) = 0,∀ωεΩ. By contrast, since project payoffs can not be fully hedged in complete
markets, at least one non-zero εt(ω) exists, i.e.,

∑
ωεΩ

εt(ω) 6= 0.

3.2. Dynamic Programming. For our recursive optimization problems, exponential utility
is introduced into the objective function. The exponential utility function is chosen for at
least three special reasons. Firstly, it demonstrates the property of constant absolute risk
aversion (CARA) which makes the certainty equivalent and the optimal investment decision
independent of the level of initial wealth, and the exponential utility also allows us to readily
observe how the certainty equivalent is influenced by the investor’s risk preference, expressed by
the coeffi cient of CARA. Secondly, in the exponential utility function, both the temporal value
function, Jt , and the temporal consumption, Ct , can be explicitly expressed as a function
of wealth, Vt as recursive structures while other forms of utility functions can not derive such
convenient solutions. Thirdly, the delta property of the exponential utility makes the certainty
equivalent of the buying price approach equal to that of the selling price approach. The use of
exponential utility in literature is adequate, such as Davis (2001) in financial planning, Bliss
and Panigirtzoglou (2004) in option pricing, and Henderson (2005) in portfolio choice. As
argued by Merton (1992), optimal consumption in exponential utility is linear in wealth and
thus consistent with a balanced growth path.
Suppose the investor’s objective is to maximize his/her expected utility over terminal wealth

(VT ). To simplify the analysis, we let α denote the position invested in the risky security, i.e.,
α = θS, be the matrix of excess return of risky stocks, i.e., X = x − r , and A be the coeffi cient
of the investor’s risk attitude (A > 0 ) . The utility maximization problem can be formulated
as follows:

max
α∗0 ,α

∗
1 ,··· ,α∗T−1

E0 [− exp (−AVT )]

s.t. Vt = (1 + r)Vt−1 + α∗t−1Xt +Ht, t = 1, · · · , T
(9)

Let the superscript * denote the parameters affected by the income streams. With the rule
of iterative expectations, the optimization problem can be expressed as the following dynamic
programming equation:

J∗0 = max
α∗0 ,α

∗
1 ,··· ,α∗T−2

E0[J∗T−1] (10)

where J denotes the maximized utility function and J∗T−1 = max
α∗T−1

ET−1 [− exp (−AVT )] .

Substituting the budget constraint into Equation (10) and taking the first order condition
with respect to α∗T−1 equal to zero, we know that α

∗
T−1 can be solved from:

ET−1

{
XT exp

[
−A

(
α∗T−1XT +HT

)]}
= 0 (11)

or alternatively ∑
ω∈Ω

P (ω)XT (ω) exp
[
−A

(
α∗T−1XT (ω) +HT (ω)

)]
= 0 (12)

By recursive optimizations for multi-periods, it is convenient to generalize that for any time
period t , α∗t can be solved from:

Et
{
β∗t+1Xt+1 exp [−Aλt+1 (α∗tXt+1 +Ht+1)]

}
= 0 (13)

where β∗t = Et(K
∗
t+1β

∗
t+1), β∗T = 1,

K∗t (ω) = exp{−Aλt[α∗t−1Xt(ω) +Ht(ω)]},∀ωεΩ, and

λt = (1 + r)
T−t

.

The temporal value function for any time period t can be expressed as

J∗t = β∗t [− exp (−AλtVt)] (14)
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Next, the same utility maximization problem needs to be solved without income streams in the
budget constraints. The problem in Equation (9) thus is restated as follows:

max
α0,α1,··· ,αT−1

E0 [− exp (−AVT )]

s.t. Vt = (1 + r)Vt−1 + αt−1Xt, t = 1, · · · , T
(15)

The recursive structures in this problem are exactly the same as Equation (13) and Equation
(14) with the asterisk, * , removed. Since there are no income streams involved in the problem,
αt must be solved from:

Et
[
βt+1Xt+1 exp (−Aλt+1αtXt+1)

]
= 0 (16)

Note that the main difference between α∗t and αt is that the former is the optimal trading
strategies under the consideration of income streams while the latter represents the autonomous
trading strategies without income streams. The temporal value function associated with Equa-
tion (15) can be solved as given below:

Jt = βt [− exp (−AλtVt)] (17)

Note that Equations (14) and (17) have the same functional form. Next, we introduce two
approaches to solve for certainty equivalent.

3.3. Solving for Certainty Equivalent. The basic idea of a certainty equivalent is to calcu-
late the dollar amount that equates both maximized utility functions, J and J•. This idea can
be conceptualized in Figure 1.

0 W e a l th

U ti l i ty

C E

J 0

J 0 * U t il it y   w it h  P r o je c t

U t ili t y   w i t h o u t   P ro je c t

0 W e a l th

U ti l i ty

C E

J 0

J 0 * U t il it y   w it h  P r o je c t

U t ili t y   w i t h o u t   P ro je c t

Figure 1. The Conceptual Framework for Deriving Certainty Equivalent (CE)
As mentioned earlier, there are two approaches to the derivation of certainty equivalent,

the buying price approach and the selling price approach. The buying price is defined as the
lump-sum present payment, made by the buyer, which makes the maximum expected utility
with the project, J ∗0 , equal to the maximum expected utility without the project, J0. Let CE

B
t

denote the certainty equivalent of income streams, based on the buying price approach at time
t . Thus, the buying price approach describes the following relationship at time t :

β∗t
{
− exp

[
−Aλt

(
Vt − CEBt

)]}
= βt {− exp [−A (λtVt)]} (18)

When solving Equation (18) for CEBt , we have the certainty equivalent of income streams
as shown below:

CEBt =
1

Aλt

[
ln(

βt
β∗t

)

]
(19)
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The selling price is defined as the added-in certainty equivalent, received by the seller, which
makes the maximum expected utility without the project equal to the maximum expected utility
with the project in order to compensate for the loss of the project. Let CESt denote the certainty
equivalent of income streams, based on the selling price approach at time t . By equating the
expected utilities both with and without the project, we have the following relationship:

β∗t {− exp[−A(λ∗tVt)]} = βt
{
− exp[−Aλt(Vt + CESt )]

}
(20)

Solving the above equation for CESt , we have

CESt =
1

Aλt

[
ln(

βt
β∗t

)

]
(21)

One could easily find that Equations (19) and (21) are exactly equivalent. The implication of
this equality makes sure that CEB or CES is a fair price for income streams of an investment
opportunity to both the buyer and the seller when they have the same risk preference. In
addition, compared to earlier related studies, the result of the equality of the buying price
and the selling price provides an improvement because the solution of certainty equivalent is
explicitly given as well as shown to be negatively dependent on the investor’s risk attitude.
The negativity is interpreted in the sense that when A becomes larger, i.e., the investor is more
risk-averse, the certainty equivalent is smaller. The main result of dynamic programming is
summarized in Table 1.

Table 1. Maximizing Expected Utility over Terminal Wealth
(A)

Optimization
Objective

Terminal Wealth (Without Income Streams in the Constraint)

Problem J0=maxα0,α1,··· ,αT−1E0 [− exp (−AVT )]
Constraint Vt (ω)=(1 + r)Vt−1+αt−1Xt (ω), ∀ω ∈ Ω
Solution for
the Last
Period

αt is solved from Et
[
βt+1Xt+1 exp (−Aλt+1αtXt+1)

]
=0, λT=1,

βT=1

Recursive
Structures

λt=(1 + r)
T−t, Kt (ω)=exp [−Aλtαt−1Xt (ω)], βt=Et

(
Kt+1βt+1

)
,

Jt=βt [− exp (−AλtVt)]
Maximized
Expected
Utility

J0=β0 [− exp (−Aλ0V0)]

Certainty
Equivalent

CEt= 1
Aλt

[
ln( βtβ∗t

)
]

(B)
Optimization
Objective

Terminal Wealth (With Income Streams in the Constraint)

Problem J0=maxα∗0 ,α∗1 ,··· ,α∗T−1E0 [− exp (−AVT )]

Constraint Vt (ω)=Vt−1 (1 + r)+α∗t−1Xt (ω)+Ht (ω), ∀ω ∈ Ω,t=0,· · · ,T
Solution for
the Last
Period

α∗t is solved from Et
{
β∗t+1Xt+1 exp [−Aλt+1 (α∗tXt+1 +Ht+1)]

}
=0,

λT=1, β
∗
T=1

Recursive
Structures

K∗t (ω)=exp
{
−Aλt

[
α∗t−1Xt (ω) +Ht (ω)

]}
, ∀ω ∈

Ω, λt=(1 + r)
T−t

, β∗t=Et
(
K∗t+1β

∗
t+1

)
, J∗t=β

∗
t [− exp (−AλtVt)]

Maximized
Expected
Utility

J∗0=β
∗
0 [− exp (−Aλ0V0)]

Certainty
Equivalent

CEt= 1
Aλt

[
ln( βtβ∗t

)
]
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3.4. Numerical Techniques. One possible problem encountered in the preceding derivation
is that the magnitude of income streams may be too large to compute in the exponential utility
function. Under the circumstances, income streams could be resolved with existing traded
securities into the form of Equation (8) and the hedged residuals could be handled in a simple
fashion. The basic intuition underlying the numerical techniques is to truncate the additional
states of the world to match existing traded securities for the purpose of solving the system
of equations for one set of trading strategies. For the world with N+1 securities and k risky
states, (N + 1 < k), we need to leave k − (N + 1) states out of the system and solve a system
of N equations for the unique solution of trading strategies, θ = {θn : n = 0, 1, · · · , N}:

(1 + r) S1 (ω1) · · · SN (ω1)
(1 + r) S1 (ω2) · · · SN (ω2)
...

...
...

...
(1 + r) S1 (ωN+1) · · · SN (ωN+1)

×


θ0

θ1

...
θN

 =


H (ω1)
H (ω2)
...

H (ωN+1)

 (22)

Apparently, the residual terms, ε (ωn) ,∀n = 0, 1, · · · , N will be equal to zero, but the trun-
cated residuals, ε (ωn) ,∀n = N + 1, · · · , k, will not be zero under the particular set of trading
strategies. The magnitude of these non-zero residuals permits us to gain insight into the degree
of market incompleteness.
In the world of one risk-free security and one risky security, income streams can be expressed

as follows:

Ht (ω) = θ0
t−1 (1 + r) + θ1

t−1S
1
t (ω) + εt (ω) , ∀ω ∈ Ω (23)

In addition, the replicating strategies are given as follows:

θ0
t−1 =

Ht (ω2)St (ω1)−Ht (ω1)St (ω2)

(1 + r) [St (ω1)− St (ω2)]
(24)

θ1
t−1 =

Ht (ω1)−Ht (ω2)

St (ω1)− St (ω2)
(25)

In terms of risk-free and excess returns, Ht (ω) can be rearranged as follows:

Ht (ω) = H̃t−1 (1 + r) + αht−1Xt (ω) + εt (ω) (26)

where H̃t−1 = θ0
t−1 + θ1

t−1St−1 and αht−1 = θ1
t−1St−1.

The sum of H̃t−1 and αht−1 represents the hedged position with existing traded securities,
where H̃t−1 is the risk-free hedged component and αht−1 is the excess-return hedged component.
In a world of one risk-free security and several risky securities, H̃t−1 and αht−1 simply become
a risk-free hedged vector and an excess-return hedged vector, respectively.
By substituting Equation (26) into the budget constraint in Equation (9), the wealth process

can also be expressed by the sum of the risk-free term, the excess-return term, and the residual
term as in Equation (26):

Vt (ω) = (1 + r)
(
Vt−1 + H̃t−1

)
+ α̃∗t−1Xt (ω) + εt (ω) (27)

where α̃∗t−1 denotes the new trading strategies and α̃
∗
t−1 = α∗t−1 + αht−1.

With Equation (27) substituted into the utility maximization problem as the new budget
constraint, the optimization problem is easily solved for the certainty equivalent. For the
problem of maximizing expected utility over terminal wealth, α̃∗t can be solved from

Et
{
βt+1Xt+1 exp [−Aλt+1 (α̃∗tXt+1 + εt+1)]

}
= 0 (28)

where β∗t = Et
(
K∗t+1β

∗
t+1

)
, β∗T = 1, and

K∗t (ω) = exp
{
−Aλt

[
α̃∗t−1Xt (ω) + εt (ω)

]}
,∀ω ∈ Ω.
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Finally, certainty equivalent at time t becomes

CEt = H̃t +
Xt+1 (α̃∗t − αt)

(1 + r)
+

εt+1

(1 + r)
(29)

The expression of Equation (29) has an important implication for pricing income streams.
As we already know, the first term represents the portion of certainty equivalent of income
streams that can be hedged away with existing traded securities, and the second term stands
for the difference in the risky position due to holding the investment opportunity. The last term
is the replicating residuals yet to be resolved in the optimization due to market incompleteness.
In the case of complete markets, i.e., the replicating residuals equal to zero, the certainty
equivalent converges to a unique hedged value, H̃t, plus the changes in the risky position due to
holding the investment opportunity, Xt+1(α̃∗t−αt)

(1+r) . Consequently, with all the uncertain states of
the world resolved, the probability measure P becomes an equivalent martingale measure and
the certainty equivalent is thus a martingale price. By contrast, as the market is incomplete,
it is impossible to pinpoint an exact present value of income streams, instead the certainty
equivalent of income streams is situated in an interval of values which solely depends on the
degree of market incompleteness, i.e., the residuals. Finally, note that the coeffi cient of risk
aversion is dropped out of Equation (29), the derivation of certainty equivalent is independent
of the degree of risk aversion.
To sum up, the preceding numerical technique can remove the hedged position, H̃t, from

the optimization procedure and allow us to simply deal with the hedged residuals for easier
computation. More importantly, the numerical technique provides a way to observe how project
values converge to a martingale and diverge into an interval of price bounds dependent on the
replicating residuals. The magnitude of the replicating residuals sheds light on the degree of
market incompleteness.

3.5. The Value of an Investment Project. Now that the value of an investment opportunity
could be identified from the certainty equivalent, it is thus clear that net present value of an
“invest now”alternative could be expressed as follows:

NPVinvest = CEt − I (30)

In a similar fashion, it is convenient to calculate net present value of a “defer”alternative.
Therefore, the value of a deferral option, Vdeferral, is computed as follows:

Vdeferral = NPVdefer −NPVinvest (31)

4. Extensions

The derivations in the preceding section are based on the maximization of expected utility
over terminal wealth. In fact, an individual investor may be interested in maximizing expected
utility over consumptions over time with/out terminal wealth. In this section, we would like
to deal with the problem and derive certainty equivalent with the same approach of dynamic
programming. Since certainty equivalent may converge to a martingale value in a complete
market, its value depends on the degree of market completeness. Here, we would like to propose
a method to measure market incompleteness.

4.1. Maximizing Expected Utility over Consumptions with/out Terminal Wealth.
When individual investor’s objective is to maximize expected utility over consumptions over
time, i.e. withdrawing money from wealth each period, the utility function should be mod-
eled explicitly over consumption streams. With the exponential utility function, the optimal
investment-consumption problem can be formulated as follows:

max
α∗0, α

∗
1, · · · , α∗T−1

C0, C1, · · · , CT−1

E0

{
T∑
t=0

Bt [− exp (−ACt)]
}

(32)
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s.t. Vt(ω) = (Vt−1 − Ct−1)(1 + r) + α∗T−1Xt(ω) +Ht(ω),∀ω ∈ Ω,

Ct ≤ Vt, t < T

CT = VT

where Bt denotes the utility weight at time t to capture investor’s time preference for consump-
tions.
To simplify the problem, Equation (32) can be expressed as the dynamic programming

equation, J0, as follows:

max
α∗0, α

∗
1, · · · , α∗T−2

C0, C1, · · · , CT−1

E0

{
T−2∑
t=0

Bt [− exp (−ACt)] + JT−1

}
(33)

where JT−1 = max
α∗T−1,CT−1

ET−1 {BT−1 [− exp (−ACT−1)] +BT [− exp (−ACT )]}.

Recursive optimization of dynamic programming starts from working on J∗T−1, taking the
first order conditions with respect to α∗T−1 and CT−1, and then moving backwardly until J∗0 .
For period T-1, the first order condition ensures that α∗T−1 can be solved from

ET−1

{
XT exp

[
−A

(
α∗T−1XT +HT

)]}
= 0 (34)

The optimal consumption at time T − 1 is solved in terms of a linear function of VT−1 as
follows:

CT−1 = γ∗T−1 + λT−1VT−1 (35)

where γ∗T−1 = −
ln

(
BTET−1(K

∗
T )(1+r)

BT−1

)
A(2+r) ,

K∗T (ω) = exp {−A [αT−1XT (ω) +HT (ω)]} , ∀ω ∈ Ω,

λT−1 =
1 + r

2 + r
.

Finally, the maximized utility function, JT−1, can be derived as follows:

J∗T−1 = β∗T−1 [− exp (−AλT−1VT−1)] (36)

where β∗T−1 = BT−1 exp
(
−AγT−1

)
+BTET−1 (K∗T ) exp

[
AγT−1 (1 + r)

]
.

Note that we still use the superscript * to note the parameters affected by income streams.
For other periods, α∗t can be found from

Et
{
β∗t+1Xt+1 exp [−Aλt+1 (α∗tXt+1 +Ht+1)]

}
= 0 (37)

where β∗t = Bt exp (−Aγt) + β∗t+1Et
(
K∗t+1

)
exp [Aλt+1γt (1 + r)].

The recursive structures of the solution for the other periods can be generalized as follows:

Ct = γ∗t + λtVt (38)

where γ∗t = −
ln

[
β∗t+1Et(K∗

t+1)λt+1(1+r)
Bt

]
A[1+λt+1(1+r)] ,

K∗t (ω) = exp
{
−Aλt

[
α∗t−1Xt (ω) +Ht (ω)

]}
, and

λt =
λt+1(1 + r)

1 + λt+1(1 + r)
, λT = 1.

It is worth noting that the solution of the maximized expected utility, J∗, is exactly the same
as that of the problem of maximizing expected utility over terminal wealth.
In the case that no income streams are involved, the previous recursive structure can still

work by assuming Ht = 0, ∀t = 0, · · · , T . With the buying price approach and the selling price
approach, income streams can also be evaluated by certainty equivalent in Equation (19) and
(21), respectively.
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For the investors who have preference for consumptions over time and terminal wealth, the
optimization problem can be restated as

max
α∗0, α

∗
1, · · · , α∗T−1

C0, C1, · · · , CT−1, CT

E0

{
T∑
t=0

Bt [− exp (−ACt)] +BW [− exp (−AW )]

}
(39)

s.t. W = VT − CT
Vt (ω) = (Vt−1 − Ct−1) (1 + r) + αt−1Xt (ω) +Ht (ω) ,∀ω ∈ Ω

Ct ≤ Vt, t < T

where BW is the utility weights for terminal wealth.
For this problem, the optimization procedure is somewhat different from the previous one.

We need to start from period T , that is

JT = max
CT
{BT [− exp (−ACT )] +BW [− exp (−AVT +ACT )]} (40)

Taking the first order derivative with respect to CT , we have the optimal terminal consumption
as follows:

CT = γ∗T + λTVT (41)

where γ∗T = −
ln
(
BW
BT

)
2A and λT = 1

2 .
The rest of recursive structures are exactly the same as that in the previous problem.
To interpret the recursive restructures, γt can be seen as autonomous consumption, which is

the minimum amount that the investor has to consume at time period t. This interpretation of
γt makes λt marginal propensity to consume, which determines marginal consumption for one
additional unit of Vt. It is also obvious that λt is not affected by income streams while γt, on
the other hand, is. Consequently, income streams of an investment project do not change the
investor’s marginal consumptions in exponential utility. However, autonomous consumptions
as well as expected utility increases with the amount of income streams.
In addition, as we conduct the recursive optimizations, βt becomes the new utility weight

in place of Bt. Meanwhile, Kt describes the marginal effect on the expected utility due to the
optimal trading strategy and income streams. Thus, −ln(Kt) represents the marginal wealth
due to hedging income streams at time t .

4.2. Measuring Market Incompleteness. We can extend the optimization problem to ex-
plore the situation in that income streams are to some extent correlated with security prices.
Let S∗ denote the vector of payoffs generated by the hedged portfolio of securities under the
optimal trading strategies. Suppose we know the distribution of securities prices such that σ2

S

is known. Let corr(S∗, H) = ρS∗H denote the correlation coeffi cient between the payoffs of the
hedged portfolio, S∗, and income streams, H. It’s assumed that there exists a random variable
Y which has no correlation with S∗, i.e., σS∗Y = 0. In this situation, income streams can be
expressed as a linear combination of S∗ and Y as follows:

H = WS∗S
∗ +WY Y (42)

where WS∗ and WY are the weights corresponding to S∗ and Y, respectively, yet to be solved.
With the assumption of σS∗Y = 0, it is easy to obtain the following two equations:

σS∗H = WS∗σ
2
S∗ (43)

σ2
H = W 2

S∗σ
2
S∗ +W 2

Y σ
2
Y (44)

Substituting Equation (43) into ρS∗H = σS∗H/σS∗σH and solving for WS∗ , we have WS∗

expressed by ρS∗H :

WS∗ =
σHρS∗H
σS∗

(45)
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Substituting Equation (45) back to Equation (44) and solving for WY , we also have WY ex-
pressed by ρS∗H :

WY =
σH
√

1− ρ2
S∗H

σY
(46)

The coeffi cient of correlation between the income streams and the hedged portfolio can play
a crucial role in measuring the degree of market incompleteness. It is easy to observe that as
S∗ and H are more positively correlated, i.e. ρS∗H → 1, WS becomes larger and WY becomes
smaller. We may interpret the second term in Equation (42), WY Y , as the shocks leading
to market incompleteness. Apparently, the higher coeffi cient of correlation is, the lower the
weights of the shocks terms are. In the case of perfect correlation (ρS∗H = 1), it is convenient
to see WS∗ = σH/σS∗ and WY = 0, implying the case of complete markets. Since there are
no replicating residuals to be resolved in utility optimization, the value of certainty equivalent
converges to the martingale price, H̃t.
In the other extreme situation in that there is no correlation between the income streams

and securities prices, we have WS∗ = 0 and WY = 1, suggesting that the overall shocks become
substantially large. This also means that these substantial shocks need to be resolved in utility
optimization, leading to a variation of certainty equivalent subject to risk attitude. Therefore,
certainty equivalent falls into an interval of values which are bounded by investor’s risk attitude.
Now, the next logical question is to ask how to construct a random variable, Y, which has

no correlation with S∗, i.e.,ρS∗Y = σS∗Y = 0. Note that σS∗Y = 0also means E(S∗Y ) −
E(S∗)E(Y ) = 0 or E(S∗Y ) = E(S∗)E(Y ). Suppose that there are k states of the world,
which implies that each of both X and Y takes k values for each period, and recall that
S∗t (ω1) , · · · , S∗t (ωk) are determined from the optimal trading strategies. The next step is to
construct k− 1 arbitrary values of Y, Yt (ω1) , · · · , Yt (ωk−1) such that Yt (ωk) can be chosen to
satisfy E(S∗Y ) = E(S∗)E(Y ). The formula of Yt (ωk) is given as follows:

Yt (ωk) =
S̄∗t

{∑k−1
i=1 P [Yt (ωi)]Yt (ωi)

}
−
{∑k−1

i=1 P [S∗t (ωi)Yt (ωi)]S
∗
t (ωi)Yt (ωi)

}
{
P [S∗t (ωk)Yt (ωk)]S∗t (ωk)− P [Yt (ωk)] S̄∗t

} (47)

5. Numerical Example

5.1. Classic Investment Problem. Suppose a firm is offered an investment opportunity
to build a plant, assuming that there are no delivery lags. The investment cost now would
be $104 and the payoff will be collected a year later depending on market uncertainty (good
or bad). Alternatively, the firm could buy a one-year license to defer the project until more
information is available. After careful consideration, the firm feels that currently they have three
alternatives to choose from: to invest now, to defer one year, or to decline. There is a diagram
of the decision tree of the investment problem associated with the conditional probabilities and
payoffs in Figure 2. Suppose, for the purpose of this example, that there are only two securities
in the market: the risk-free bond with a return of 8%, and the risky stock with payoffs as shown
in Figure 3.
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Figure 2. A Classic Investment Problem in Complete Markets
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Figure 3. The Stock Dynamics for One Period

This single-period problem was first raised by Trigeorgis and Mason (1987), and then further
discussed by Copeland and Weiner (1990) and Nau and McCardle (1991) to illustrate the
different approaches to valuation. By presenting this problem, we can review how the different
approaches are adopted to solve this problem. Copeland and Weiner (1990) use this problem
to make a comparison of the differences between decision tree analysis and contingent claims
analysis, and argue that the latter is superior to the former for two reasons: firstly, that the
risk-adjusted discount rate is often misused by management, and, secondly, that managerial
flexibility is generally ignored in decision tree analysis. However, what they fail to point out
is that the validity of contingent claims analysis rests on the assumption that the markets are
complete.
On the other hand, Nau and McCardle (1991) argue that the problem may be solved with

contingent claims analysis as long as the no-arbitrage principle holds. Thus, the result of a
martingale price under the no-arbitrage principle is effectively equivalent to that under the
complete markets assumption. Their main departure from conventional real options literature
is that optimization techniques are introduced to explicitly model the investor’s risk attitude.
Nevertheless, Nau and McCardle neglect the reality that most capital investments are mostly
non-traded assets on the market, which leads to the presence of arbitrage opportunities. The
second disadvantage of their approach is that the investor’s fundamental preference is assumed
to maximize expected utility over terminal wealth. This assumption may be inappropriate if
investors’fundamental preferences are for consumption streams.
The basic investment problem is obviously a real option problem in complete markets since

there are two primary securities and two states of the world. Smith and Nau (1995) extend
the same investment problem in the situation where the markets are incomplete by recognizing
one additional source of uncertainty, operating uncertainty (either effi cient or ineffi cient, for
simplicity), as shown in Figure 4. In their framework, they integrate the techniques of utility
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maximization and decision tree analysis to evaluate the investment opportunity. The specific
assumption made for the integrated framework is that project uncertainties are divided into
market uncertainty and private uncertainty; the former is assumed to be fully resolved with
a risk-neutral probability measure and the latter needs a risk-adjusted probability measure to
comply with decision tree analysis. The technique of expected utility maximization is then
introduced to consider the investor’s risk preference. The specific assumption allows their inte-
grated framework to solve the problem as a special case. Furthermore, in a similar way to Nau
and McCardle (1991), Smith and Nau (1995) assume that the objective function is to maximize
expected utility over terminal wealth, which may appear to be an inappropriate assumption if
the investor’s fundamental preference is for consumption. Smith (1998) extends the same in-
tegrated framework to maximize expected utility over consumption streams. However, neither
Smith and Nau (1995) nor Smith (1998) explicitly solves the recursive structures of deriving a
certainty equivalent, which allow us to observe how the value of an investment opportunity in
an incomplete market deviates from a martingale and falls into an interval of price bounds.

Good 0.5

Good 0.5

Bad 0.5

Bad 0.5

Invest (­$104)

Decline

Defer

$190

$0

$30

$70

$170
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Inefficient 0.25
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$0

Good 0.5

Bad 0.5 $0

Figure 4. The Extended Investment Problem

5.2. Problem Solution. We apply the dynamic programming framework to solve the ex-
tended investment problem in the preceding section. Assume that the objective of the man-
agement is to maximize expected utility over consumptions and terminal corporate wealth.
Since initial wealth is independent of the calculation of certainty equivalent and optimal trad-
ing strategies, the firm’s initial wealth, V0, is given as zero for the sake of simplicity. It is also
suppose the firm would take out the money equal to the risk-free rate as consumptions.
We then compute the NPVs of all alternatives, i.e., invest now, defer, and decline, with

sensitivity to changes in the coeffi cient of risk aversion. The results are displayed in Table
2 and Figure 5. As shown in Table 2, if the firm decides to launch the investment project
immediately at an investment cost of $104, the firm will receive a certainty equivalent value
of $83.06, which obviously leads to a negative NPV of -$20.94, assuming the coeffi cient of risk
aversion equal to 1. Also, as the coeffi cient of risk aversion changes from 1 to 6, the CE value for
the “invest now”alternative decreases from 83.06 to 77.01, leading to the changes in NPV from
-20.94 to -29.99, i.e., from -20.13% to -25.95% as a percentage of investment cost. The negative
relationship between risk aversion and CE is consistent with the derivation in the preceding
section.
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Table 2. Net Present Values of all Alternatives
(Numbers in brackets are expressed as a percentage of investment cost)

Alternatives 1 2 3 4 5 6
Invest CE 83.06 82.17 81.03 80.56 78.87 77.01

NPV −20.94 −21.83 −22.97 −23.44 −25.13 −26.99
(−20.13%) (−20.99%) (−22.09%) (−22.54%) (−24.16%) (−25.95%)

Defer NPV 20.16 21.49 22.04 22.76 23.65 24.87
(19.38%) (20.66%) (21.19%) (21.88%) (22.74%) (23.91%)

Option Value 41.10 43.32 45.01 46.2 48.78 51.86
(39.52%) (41.65%) (43.28%) (44.42%) (46.90%) (49.87%)
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Figure 5. The Values of All Alternatives
For the “defer”alternative, its NPV ranges from 20.16 to 24.87, i.e., from 19.38% to 23.91%

as a percentage of investment cost, as risk aversion increases. The option value therefore
could be computed by subtracting the NPV of the “invest”alternative. As shown in Table 2,
as management becomes more risk-averse, the option value increases from 41.10 to 51.86, i.e.,
from 39.52% to 49.87% as a percentage of investment cost. Since the “defer”alternative is much
more valuable than the other two alternatives regardless of the coeffi cients of risk aversion, the
firm should therefore defer the investment project and wait to see the market conditions one
year later, rather than initiate or decline the project immediately.
It is important to point out that there are only two parameters to be determined in our

analysis, i.e., initial investment cost and risk-free rate, as the market conditions are given in
the classic investment problem. However, since both the CEs and option values are expressed
as a percentage of investment cost, the choice of parameter value is out of concern. In addition,
as the option to defer does not exist for a long time in the analysis, both the CEs and option
values are insensitive to the changes in risk-free rate..

6. Concluding Remarks

In this paper, a dynamic programming framework in discrete time is presented to value an
investment project in an incomplete by maximizing expected utility of an investor. Since the
equivalent martingale price does not exist in an incomplete market, an investment project must
be valued by a certainty equivalent. It is then demonstrated that two approaches to deriving
certainty equivalent, the buying price approach and the seller price approach, are exactly equal
in the exponential utility, given that the buyer and the seller have same risk preference. This
equality implies that the certainty equivalent can be a fair price of income streams for both the
buyer and the seller in an incomplete market. Therefore, our approach, compared to alternative
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models, is relatively intuitive and easy to apply. This model also finds that certainty equivalent
tends to increase, as the investment decision-maker becomes more risk-averse. This means that
when a decision-maker is more risk-averse, he/she requires more compensations to make up
his/her risk tolerance.
In the utility maximization models, this study also develops numerical techniques in order to

resolve income streams by dividing them into two components as follows: the hedged positions
under the optimal trading strategies and the replicating residuals, the former representing the
positions that can be hedged with existing traded securities, and the latter being the residuals
that cannot be hedged away. Since the replicating residuals disappear in complete markets,
the certainty equivalent of income streams converges to the value of the hedged position. In
other words, the objective probability measure in a complete market becomes the risk-neutral
probability measure, which leads the CE value to the martingale price. Hence, the CE value
converges in complete markets to the martingale price and diverges in an incomplete market
into an interval of prices which are conditional on the replicating residuals, a representation of
the degree of market incompleteness. Thus, the model based on utility maximization becomes a
general valuation framework which may be applied either in a complete or incomplete market.
For empirical implications, the result of our numerical analysis indicates that management’s

risk aversion could be positively related to option value in an incomplete market, while op-
tion value also depends on the degree of market incompleteness. This finding is consistent
with the finding of Serra et al. (2011), in which they provide evidence for farmer’s decision
related to their CE and risk attitude in an incomplete agricultural market. Furthermore, it is
demonstrated that this utility-maximization, dynamic-programming approach could be readily
applied to evaluate all investment alternatives available to management. In general, the study
finds that the approach provides a major advantage over the traditional DCF approach in the
considerations of market completeness and investor’s risk aversion. This advantage could en-
hance management making an appropriate investment decision, which is especially important
for a near-zero-NPV project.
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