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GENERALIZED HYPERBOLIC DISTRIBUTIONS: EMPIRICAL EVIDENCE

ON BUCHAREST STOCK EXCHANGE

OLIVIA ANDREEA BACIU

Abstract. On five of the most liquid and important equities of the Romanian stock market

together with the market index is investigated the fit of the generalized hyperbolic distrib-

utions. The parameters of the hyperbolic distribution, Variance- Gamma, Normal Inverse

Gaussian, skewed t Student and generalized hyperbolic are estimated using the maximum

likelihood estimation. The goodness-of-fit measures used to assess the fit of each distribu-

tion are the Kolmogorov- Smirnov distance, Akaike information criteria and the log- likeli-

hood. Plots are also inspected. The Variance- Gamma distribution was ruled out by the

Kolmogorov- Smirnov test. After inspecting the plots, a good approximation of the data was

given by the Normal Inverse Gaussian distribution and the generalized hyperbolic, but based

on the goodness-of-fit measures, the generalized hyperbolic distribution yield to be the best

fit.

1. Introduction

The behavior of the capital markets return has been the subject of numerous studies from

Mandelbrot (1963) until nowadays. Although at the beginnings it was assumed the normality

in the asset returns, studies have shown that they follow a distribution with heavier tails and

a longer shape than the normal curve. When analyzing the cotton price, Mandelbrot noticed

that the returns exhibit heavier tails and a leptokurtic distribution.

The distribution of the asset returns play an important role both in financial models and risk

management. Based on the assumptions of the behavior of the asset returns are constructed

portfolios that tend to be optimal with a minimum risk of loss. Risk management theories rely

only on the distribution of the tails and the choice of a distribution that underestimates the

weight of the extreme values would lead to an underestimated loss. In financial modeling, most

of the theories are constructed based on the distribution of the financial data.

Over the time, several distributions were identified to describe well the stock market data, but

there is not known one distribution that fits perfectly. Among such distributions is the family

of the generalized hyperbolic distributions (ghyd) introduced by Barndorff-Nielsen (1977).

In this paper are fit the univariate cases of the ghyd family to the daily returns of five

Romanian stocks and the index of the Romanian market, BET, between 2007 and 2012.The

choice between the several distributions is made using the goodness-of-fit measures, inspection

of the plots and a comparison of the central moments of each distribution to the ones of the

empirical distribution.

One of the main contributions of this study is that the analysis is performed not only on the

Romanian market index, but also on five of its most important and liquid equities. Another

contribution is that this study show the performance of the ghyd family compared to the normal
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distribution on stock market data and makes a comparison among the sub-classes of the ghyd

family.

The paper is structured as follows. Second part makes a brief review of the most important

studies. In the third section is introduced the ghyd family, mathematical description of the

general framework and particularities of the sub-families. Section 4 describes the methodology

and gives a short description of the estimation method. In section 5 is introduced the data set.

Section 6 presents the results and finally, section 7 concludes the paper.

2. Literature review

Although introduced years before, the ghyd distribution was first applied to financial data

by Eberlein and Keller (1995) on a portfolio of the German stock market. Several special cases

were introduced around the same time.

Madan and Seneta (1990), Madan and Milne (1991) proposed and investigated a special case

of the ghyd family, the Variance Gamma distribution (VG) and Seneta (2004) fits this distri-

bution on the returns of the S&P 500 Index. Hansen (1994) introduced the skewed Student’s

t distribution (t Student) for modeling heavier tails, which later was improved by Aas and

Haff (2006) by constructing one of the tails as a polynomial function and the other one as an

exponential function.

The Normal- Inverse Gaussian distribution (NIG) was introduced by Barndorff- Nielsen

(1995, 1997) and studies like the ones of Karlis (2002) or Venter and De Jongh (2002) have

shown a better fit to financial data than other distributions of the ghyd family. A more recent

study of Cepni et al. (2013) compares the fittings of the NIG and VG distributions on a data set

of twenty emerging and developed markets and concluded that VG has a better performance.

For heavy tail data, the new approach of the t Student distribution provides a better fit than

NIG.

Fajardo and Farias (2004) fit the ghyd to the Brazilian stock data returns and based on the

goodness of fit measures concluded that it provides a good fit. Necula (2009) used the ghyd to fit

the data from ten stock markets, both developed and emerging markets, including markets from

Japan, USA, France, Germany, Romania or Czech Republic. The measures used to compare

the performance of ghyd with the normal distribution are the first four central moments, the

Kolmogorov- Smirnov and Anderson- Darling statistics, the q-q plots and concluded a good fit

of the ghyd to financial data. Studies like the ones of Prause (1997) and Behr and Potter (2009)

identified the ghyd as the best fit to financial data.

Socgnia and Wilcox (2014) compared the fit on a data set of the Johannesburg Stock Ex-

change of the ghyd, hyperbolic distribution (hyp), VG, NIG and t Student. Based on the

log-likelihood and Akaike information criteria, the best fit was given by the ghyd.

3. Mathematical description of the Generalized Hyperbolic Distributions

As introduced by Barndorff-Nielsen (1977), a univariate generalized hyperbolic distribution

is described by five parameters (    ), which correspond to kurtosis, shape, symmetry,

scale and location.

The probability density function of the univariate ghyd, as in Prause (1999) is given by:

 (;    ) =  (   )
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The function (   ) represents the norming factor and () is the third type of the

modified Bessel function with index , introduced by Abramowitz and Stegun (1968). For the

above, the domains of the parameters are   ∈ , −    ,   0,   0.

Using simplified Bessel functions leads to special cases of the ghyd family. When the para-

meter  takes the value 1, it is the case of the hyp with a simplified probability density function,

given by:

 (|   ) =
p
2 − 2
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and with the domain of the parameters:   0, −    ,   0,  ∈ .

For  = −12 it is obtained the NIG, a distribution with heavier tails than the hyp one.
NIG has the following probability density function:

 (|   ) =  (   ) [2 + (− )
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Another special case is the VG introduced by Madan and Seneta (1990), for which   0

and the probability density function is:
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with the domain of the parameters:   0,   0, −∞   ∞, −∞   ∞.
According to Paolella (2007), the relationship between the parameters of the ghyd and VG

is given by:  =   =
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Another limiting case is the distribution t Student, for which the density function is described

by the below function and   0.
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4. Methodology

In the process of analyzing if ghyd represents a good choice in modeling the stock market

data, the first step is to fit the univariate distributions to data. From the family of the ghyd

distributions are considered here hyp, VG, NIG, ghyd and t Student.

The parameters of the hyp distribution, VG, NIG, ghyd and t Student distribution are

estimated using the maximum likelihood estimation, implemented based on the EM scheme of

Dempster et al. (1977) in R ghyp package. EM algorithm is useful in maximum likelihood

estimation when data contains missing values.

For a vector of observations 1 2     , the maximum likelihood estimation of the para-

meters      is obtained by maximizing the log-likelihood function:

 (1 2     ;     ) = +
− 1

2
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+
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2
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2
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where  is defined in equation (3.2).

The aim of this paper is to find the distribution that best approximates the data. The choice

between the above mentioned univariate distributions is performed based on several goodness-

of-fit measures and plot inspection. The goodness-of-fit measures used are the ones suggested

by most of the studies on the distribution of asset or market index returns.

One of the goodness-of-fit measures is the Kolmogorov- Smirnov distance (KS), which is a

proper choice in the case of continuous distributions. This test statistic measures the supremum

of the distance between the empirical distribution function () and the estimated distribution

 () and tests if the data comes from the given distribution.

 = sup
∈
| ()−  ()| (4.2)

The KS distances are also computed for the normal distribution.

Another goodness-of-fit measure used is the Akaike Information Criterion (AIC), which is a

measure of the relative fit of the model to the data. The best model will be the one with the

smallest AIC. If  is the number of parameters in the model, then:

 = 2 − 2 (4.3)

where  represents the maximum value of the likelihood function of the estimated model.

Log-likelihood is also a goodness-of-fit measure (LL). The higher the value of LL, the better

the fit of the considered distribution to the given data.

In the process of choosing between several distributions are also inspected the density plots

and the Q-Q plots of the distributions that offer a good fit. As in Necula (2009) are inspected

the first four moments of the estimated distributions and compared to the ones of the empirical

one.

5. Data and descriptive analysis

The performance of the ghyd on the Romanian market is inspected on the daily returns of

five equities, namely the Investment Funds: SIF1, SIF2, SIF3, SIF4, SIF5 and the index of the

market, BET (Ristea et al., 2010, Dumitrana et al., 2010).

These Investment Funds are listed at Bucharest Stock Exchange and they play an important

role on the Romanian economy because they hold shares on more than 300 important companies

in different and main domains, like: energy, banking, gas. The Investment Funds represent five

giants of the economy, with a capitalization 8.8 times greater than in 1999, the moment when
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they were listed to the stock market. SIF’s are managed by well established rules and no

investor can hold more than 5% of them.

Data was collected over five years, the time period considered is between the day of the

maximum closing price in 2007 and the last trading day of 2012. The returns are computed as

the difference between natural logarithm of current day closing price and natural logarithm of

previous day closing price:

 = ln(


−1
) (5.1)

In all further computations were considered returns multiplied by 100.

The choice of the time period is due to the structural break identified in the return series at

the middle of 2007. The changes that affected the Romanian stock market after the middle of

2007 can be associated with the economical and political crisis, a moment that brought changes

in the portfolio and the main characteristics of each time series were expected to change in the

two periods of time, the ante and the crisis periods of time. In this period are expected even

more severe departures from normality, with heavier tails that are better highlighted using the

five years period of time than a longer one. The purpose of the study is to identify the behavior

of the returns on specific and extreme market conditions. Further research should be performed

on longer periods of time and verify if the market exhibits the same behavior. Another reason

for the choice of the time period is the risk management approach in the specific environment of

the crisis, issue that is addressed in Baciu (2014). In the years of the financial crisis, contrary to

the expectation, the risk of loss is overestimated when using distributions that approximate well

the data. It is of main importance, both for practice and theory, to approximate the behavior

of the returns in extreme conditions, like a financial crisis and to be able to create financial

models or risk management measures that take into account the effects of the extreme negative

returns.

In the below table are presented the descriptive statistics of the daily returns for the five

investigated funds and BET index.

Table 1. Descriptive statistics

Equity Sample size Mean Standard deviation Skewness Kurtosis Jarque-Bera

SIF 1 1352 0.0946 3.2077 0.1802 4.1727 997,7*

SIF2 1353 0.0752 3.2264 0.2385 4.5521 1191.9*

SIF 3 1372 0.1053 3.3111 0.6811 7.5740 3460.8*

SIF 4 1362 0.0987 2.9963 0.0860 4.9256 1369.4*

SIF 5 1351 0.0924 3.1551 0.1243 4.1248 965.5*

BET 1368 -0.0295 2.0075 -0.4952 5.8992 2046.9*

Note: * denotes statistical significance at 5%.

From Table 1 it can be noticed that the returns are all skewed and present a higher kurtosis

than in the case of the normal distribution. The hypothesis that data is following a normal

distribution is rejected for all equities, as suggested by the Jarque- Bera test results. Although

the considered period of time is covering a period of economical crisis, except for the BET

index, all equities have a positive mean return. The SIFs present an increased risk compared

to the risk of the market index.

6. Empirical results

The performance of each distribution is analyzed based on plots and goodness-of-fit measures.

Appendix A presents the estimated values of the parameters using the maximum likelihood

method. It can be noticed that with the exception of VG for SIF 4, all estimated distributions

are skewed.

In Figure 1 are presented the plots of the densities and log densities of the empirical, normal

and ghyd distributions. It is included only the ghyd because among all the distributions from
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the ghyd family, ghyd approximates the best the behavior of the returns and specially, the

weight of the tails. Also, the Q-Q plots of the ghyd and NIG distributions are included in

Appendix B, for a better comparison of the fit of these two distributions to the given data,

since both exhibited appropriate goodness-of-fit measures. Again, the tails of the empirical

distribution are well approximated by both distributions.

Figure 1. Plots of the densities and log-densities

Table 2 contains the goodness-of-fit measures: KS distance, AIC and LL. For all the equities,

the normal distribution is rejected by the KS test and it exhibits the highest KS distances among

all the considered distributions. It can be noticed for all the equities that there are very close

values among the AIC and LL for the distributions that are not rejected by the KS test.

For SIF 1, although the VG has the minimum AIC and maximum LL values among all the

considered distributions, the KS test rejects that data comes from the mentioned distribution.

If looking at the KS test, data could follow one of the hyp, t Student or ghyd, with a minimum

KS distance for the ghyd distribution.

For SIF 2, KS test suggest that data could follow either hyp, NIG, t Student or ghyd. The

minimum KS distance is met in the case of NIG distribution. Again, VG distribution presents

the best values for AIC and LL, but is rejected by the KS test.

SIF 3, according to the AIC and LL values, follows a VG distribution, fact rejected again by

the KS test. The next distribution with the second best values for AIC and LL is hyp, which

is also confirmed by the KS test, but the minimum KS distance is given for ghyd, followed by

NIG.
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In the case of SIF 4 returns, VG is rejected by the KS test although it exhibits the best

values for AIC and LL. KS test suggest that data follows one of the hyp, t Student or ghyd.

The minimum KS distance is obtained for ghyd.

For SIF 5 only the normal distribution is rejected by the KS test at a 1% level of confidence.

VG distribution presents the best fit according to AIC and LL and t Student has the minimum

distance.

The BET index can follow, according to the KS test, any of the considered distributions.

The smallest KS distance is in the case of the ghyd distribution, followed by t Student. The

minimum AIC value and maximum LL appears for hyp, followed by very close values by the

ghyd.

Table 2. Goodness-of-fit results

Equity Distribution KS p-value AIC LL

SIF1 Normal 0.2055 0

Hyp 0.0472 0.15 6721.53 -3356.77

NIG 0.1142 0 6728.74 -3360.37

VG 0.1613 0 5848.36 -2920.18

t Student 0.0672 0.01 6733.67 -3362.84

Ghyd 0.0614 0.02 6730.73 -3360.38

SIF2 Normal 0.2052 0

Hyp 0.0609 0.02 6701.18 -3346.59

NIG 0.0399 0.31 6694.27 -3343.13

VG 0.1793 0 5675.882 -2833.94

t Student 0.0535 0.07 6700.72 -3346.36

Ghyd 0.0589 0.03 6696.17 -3343.08

SIF3 Normal 0.1992 0

Hyp 0.0507 0.10 6865.74 -3428.74

NIG 0.0476 0.14 6867.42 -3429.71

VG 0.1718 0 5677.86 -2834.93

t Student 0.0737 0 6870.06 -3431.03

Ghyd 0.0432 0.23 6869.03 -3429.52

SIF4 Normal 0.1866 0

Hyp 0.0506 0.10 6577.22 -3284.61

NIG 0.0829 0 6578.27 -3285.14

VG 0.1516 0 5361.53 -2677.77

t Student 0.0559 0.054 6580.67 -3286.34

Ghyd 0.0496 0.11 6597.91 -3284.95

SIF5 Normal 0.222 0

Hyp 0.0618 0.02 6672.1 -3332.05

NIG 0.0628 0.02 6672.9 -3332.44

VG 0.0549 0.06 6648.97 -3320.48

t Student 0.0508 0.10 6679.98 -3335.99

Ghyd 0.0589 0.03 6674.87 -3332.44

BET Normal 0.099 0

Hyp 0.0312 0.62 5461.43 -2726.72

NIG 0.0262 0.82 5443.44 -2717.72

VG 0.0282 0.74 5461.2 -2726.6

t Student 0.0241 0.89 5452.13 -2722.07

Ghyd 0.0234 0.91 5445.42 -2717.71

Overall, the distributions that can be considered to fit the data are the ghyd, NIG and for

some equities the t Student or hyp. But KS test rejects that SIF 1 or SIF 4 could follow a NIG
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distribution or SIF 3 a t Student distribution. Ghyd is the only distribution that is not rejected

for any equity.

Table 3. First four centered moments

Equity Distribution Mean Variance Skewness Kurtosis

SIF1 Empirical 0.0946 10.2970 0.1802 4.1727

Hyp 0.0951 9.7533 0.0913 6.0055

NIG 0.0945 10.324 0.1455 8.5254

VG -0.3508 8.5052 -1.1274 13.3716

t Student 0.1011 - - -

Ghyd 0.0955 10.3386 0.1518 8.6664

SIF 2 Empirical 0.0752 10.4173 0.2385 4.5520

Hyp 0.0764 9.5585 0.0741 6.0036

NIG 0.0754 10.5006 0.2285 9.7553

VG 0.9416 20.4404 2.8639 23.4692

t Student 0.0921 - - -

Ghyd 0.0745 10.5680 0.2404 10.3720

SIF3 Empirical 0.1052 10.9698 0.6810 7.5740

Hyp 0.1041 10.0656 0.0984 6.0064

NIG 0.1050 10.7658 0.2192 8.8478

VG 0.9185 32.8697 2.3934 22.5405

t Student 0.1157 - - -

Ghyd 0.1050 10.9045 0.2810 10.2090

SIF4 Empirical 0.0987 8.9833 0.0860 4.9255

Hyp 0.0978 8.4563 0.1009 6.0067

NIG 0.0980 8.9039 0.1072 8.4537

VG 0 21.1368 0 18.9063

t Student 0.1027 - - -

Ghyd 0.0977 9.0440 0.1383 9.9020

SIF5 Empirical 0.0924 9.9603 0.1243 4.1248

Hyp 0.0929 9.4297 0.0908 6.0054

NIG 0.0926 10.0527 0.1060 8.8334

VG 0.1869 10.1727 0.2353 7.0591

t Student 0.1000 - - -

Ghyd 0.0915 10.0406 0.1023 8.7092

BET Empirical -0.0515 4.0245 -0.4951 5.8991

Hyp -0.0512 3.6405 -0.2245 5.9809

NIG -0.0517 4.0427 -0.4256 10.2783

VG -0.0513 3.7288 -0.2588 6.2460

t Student -0.0750 - - -

Ghyd -0.0517 4.0306 -0.4126 10.0534

From Table 3, except the BET index, VG distribution returns values far from the empirical

mean. For all equities, NIG exhibits the closest mean value to the empirical mean, while for

SIF 3 and BET, ghyd exhibits the same mean value as NIG. NIG has the closest variance to the

empirical one with the exception of SIF 3, where the closest value is given by ghyd. The closest

skewness value is reached also in the case of the NIG distribution, excepting SIF 1 and SIF 4.

All distributions have a higher peak compared to the empirical one, but the closest values are

given by the hyp, excepting SIF 3 where is given by NIG.

Among all the distributions, the best fits are in the case of the ghyd and NIG distributions.

Based on goodness-of-fit measures ghyd outperforms the NIG distribution. This result is in line

with the one of Prause (1997), Rege and Menezes (2012) or Socgnia and Wilcox (2014).
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7. Conclusion

The family of ghyd is fitted in the present study on the Romanian stock market index, BET

and five of the most important equities on this market. The parameters of the hyp, NIG, VG,

ghyd and t Student are estimated by means of the maximum likelihood estimation.

The choice among the several distributions is made based on plots and the goodness-of-fit

measures: KS distance, LL and AIC. From the beginning, the KS test ruled out the VG. This

result is in contradiction with the one of Cepni et al. (2013), a study that found VG distribution

the best fit on a wide data set from emergent and developed markets.

As expected, after inspecting the density plots and based on KS test, the family of the ghyd

offers a better and more appropriate fit to stock market data than the normal distribution.

The goodness-of-fit measures provide AIC and LL values that are very close together for

all distributions with one exception, VG. KS distances suggested that the most appropriate

distributions to model financial data on Romanian stock market are the ghyd and NIG.

Among the five generalized hyperbolic distributions, NIG and ghyd distributions are the

ones that represent a good approximation of the data, results that are in line with the ones of

Prause (1997) or Socgnia and Wilcox (2014). Based on the goodness-of-fit measures, the ghyd

exhibit the best fit of the given data.

The study of the distribution of the returns is of main importance in fields like risk man-

agement. These results are further used in Baciu (2014), a study that concludes that over

periods of extreme market conditions, like a financial crisis, ghyd overestimates the risk of loss

and contrary to the expectation, the normal distribution that does not take into account the

extreme values could be more appropriate to predict the loss when the effects of the crisis begin

to diminish.

The present research is limited at the investigation of the Romanian market index and five of

its main equities and how well the returns follow the distributions of the generalized hyperbolic

family. As further work, the study should be extended on a larger portfolio and over a longer

period of time. Also, more goodness-of-fit measures should be interrogated. Being able to

predict the behavior of the market implies an insight of the past behavior and specially, of the

behavior on extreme conditions that could produce the worst damage for investors. For this

reason, a research that compares how well different distributions describe the behavior of stock

returns would be of main interest.
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Appendix

Appendix A: Table of the estimated parameters

Equity D istribution Param eters

Lambda alpha.bar Nu Mu Sigma gamma

SIF1 hyp 1 0.00000234 0.00000260 3.121591 0.095127

N IG -0.5 0.54572713 0.00945616 3.211088 0.085048

VG 0.315201 0 0.00000005 2.848648 -0.35083

t Student -1 .54307 0 3.086136 0.00988853 3.481767 0.091249

Ghyd -0.55178 0.54177476 0.00890538 3.213182 0.086627

SIF2 Hyp 1 0.00000099 -0.00000042 3.090738 0.076476

N IG -0.5 0.44872010 -0.03526060 3.236243 0.110754

VG 0.202606 0 -0.00000006 4.00796 0.941676

t Student -1 .37776 0 2.755525 -0.01659794 3.726415 0.108724

Ghyd -0.6251 0.43282376 -0.03270474 3.246557 0.107254

SIF3 Hyp 1 0.00000098 0.00000107 3.170933 0.10415

N IG -0.5 0.51869660 -0.01929949 3.276591 0.124378

VG 0.19186 0 0.00000008 5.33593 0.918547

t Student -1 .52513 0 3.050254 -0.02719967 3.551674 0.142976

Ghyd -0.84309 0.46720140 -0.02600721 3.296065 0.131092

SIF4 Hyp 1 0.00000046 0.00000086 2.906329 0.097864

N IG -0.5 0.55163570 0.03916995 2.982893 0.058837

VG 0.188604 0 0.00000001 4.597477 0

t Student -1 .56962 0 3.139243 0.03708066 3.202651 0.06563

Ghyd -0.90372 0.48281620 0.03718524 3.005939 0.060581

SIF5 Hyp 1 0.00000122 -0.00000035 3.06938 0.092972

N IG -0.5 0.51560270 0.03484094 3.169586 0.057815

VG 0.745859 0 0.00000000 3.182118 0.186935

t Student -1 .47637 0 2.95273 0.03695667 3.514013 0.063116

Ghyd -0.45747 0.51819470 0.03463519 3.167722 0.056922

BET Hyp 1 0.087429370 0.094435810 1.902563 -0.14564

N IG -0.5 0.426332000 0.069919490 2.002017 -0.12162

VG 0.093713 0.000000000 0.105185400 1.924239 -0.15653

t Student -1 .2557 0.000000000 2.711392 0.062485900 2.329549 -0.13755

Ghyd -0.45643 0.430174500 0.069492400 1.999277 -0.12126
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Appendix B: Q-Q plots for the ghyd and NIG distributions


