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MULTIVARIATE VAR: A ROMANIAN MARKET STUDY

ANDREI RUSU

Abstract. This paper proposes a method of estimating Value-at-Risk by combining asym-
metric multivariate GARCH models and filtered historical simulation (Barone-Adesi et al.,
1999). Next, incremental VaR is implemented in order to decompose the portfolio and as-
sess the risk of every individual component. Ten competitive models were estimated and
subsequently back tested using five techniques. All methodologies were applied on a sample
of 11 financial assets from Bucharest Stock Exchange between 2014-07-08 and 2019-10-04.
The results indicate that the method using filtered historical simulation in combination with
multivariate GARCH models that account for asymmetry of financial returns lead to good
VaR estimates. The methods discussed in this paper could help an investor to create a better
risk-optimized portfolio, but could also be used by a regulatory authority in order to impose
restrictions regarding risk..

1. Introduction

Value-at-Risk (VaR) is one of the risk measures that was and still is in the center of attention
for both researchers and financial entities. Ever since VaR entered in the literature (one of the
early VaR methodologies can be found in Morgan, 1996) there has been a constant tendency to
improve it. As Artzner et al. (1999) showed, VaR is not a coherent measure in comparison to
expected shortfall because it fails to be subadditive. However, Daníelsson et al. (2012) showed
that the property of subadditivity is less likely to be violated in the tail region of the financial
returns distribution when VaR is estimated using semi-parametric techniques in combination
with elements from extreme value theory. Recently, Silahli et al. (2019) compare parametric
and non-parametric methods of estimating VaR and propose an improved VaR based on Weibull
distribution. They used data from the cryptocurrency market. Banihashemi and Navidi (2017)
compare VaR measures and introduce a Mean-conditional VaR methodology which seems to
have better performance. Other studies such as Lu et al. (2014) and Al Janabi et al. (2019)
make use of copulas for VaR estimation, the latter also accounting for liquidity. The two studies
were focused on the oil and commodities markets respectively. Babat et al. (2017) used VaR in
an attempt to optimize the weights allocation in a portfolio of financial assets. They obtained
a “near-optimal”portfolio.

Despite the relevant findings of the above studies, none of them estimated VaR using
the filtered historical simulation introduced by Barone-Adesi et al. (1999) in a multivariate
environment and the asymmetric version of dynamic conditional correlation (aDCC) proposed
by Cappiello et al. (2006), let alone the combination of the two. In our knowledge, this area
has not yet been covered by any other study; therefore, this paper aims to fill this small gap
in the literature by making use of the aDCC and also combining it with the filtered historical
simulation in a rolling window manner. Most studies of this type were conducted on developed
or emerging markets. The present study was carried out on a portfolio selected form the
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Romanian stock market which, according to FTSE Russel classification , is still considered a
frontier market.
Last, but not least incremental VaR as in Mina and Xiao (2001) was used in order to

decompose the portfolio risk and to emphasize the risk contribution of every component.
The present work is structured in five sections: The second section provides a review of

studies that focus on the VaR measure, the third section describes the data sample and other
data related issues; a description of all VaR methodologies applied can also be found in this
section; section number four presents findings, empirical results and comparisons with related
research from the literature, and the last section concludes the study.
Note that in this paper the symbol ’denotes transposition.

2. Literature review

Value at risk is a measure that enjoys a high degree of popularity among financial entities
and researchers. However, it is always challenged by the competing measure Expected shortfall
(ES) also known as expected tail loss (ETL). One of the main disadvantages of VaR is the
fact that it does not offer a clear image of what the loss will be if the α-quantile threshold is
exceeded, while expected shortfall provides such a result. Another disadvantage of VaR consists
of it not being a coherent measure in the way Artzner et al. (1999) showed, meaning that it does
not always satisfy the property of being subadditive, while the expected shortfall does. Studies
like Rau-Bredow (2002) and Yamai and Yoshiba (2002) present comparative studies of the two
risk measures. The former research focuses on the calculation of marginal risk contributions
using the two measures. The study highlights the disadvantages of VaR (mainly the lack of
subadditivity) and proposes the Expected Shortfall as an alternative, but as its author stated
that the results’quality is uncertain in the case of random variables with discrete distributions.
Yamai and Yoshiba (2002) also compare the VaR and ES with respect to three areas: the first
one is the errors resulting from the estimation process; the second is risk factors decomposition
and last but not least, the optimization problem. This paper also favors Expected Shortfall over
VaR, however ES requires a larger data sample than VaR in order to have a robust estimation,
as Yamai and Yoshiba (2002) also acknowledged. Moreover, the study is inclined towards a
more theoretical-to-simulation approach rather than a practical application. Despite all the
above mentioned arguments in favor of ES, VaR is less likely to fail being subadditive if it
is estimated via semi-parametric methods combined with concepts from extreme value theory
as Daníelsson et al. (2012) pointed out. In their study, Kellner and Rösch (2016) compare
VaR and ES from a regulatory point of view and their findings indicate that expected tail loss
offers a higher potential for regulatory arbitrage than value-at-risk, but its risk of parameter
misspecification is also higher.
Given the pros and cons of both VaR and ES, a couple of papers focused on developing meth-

ods of estimating or enhancing both measures. Glasserman (2005) studied the decomposition of
a credit risk portfolio, using importance sampling techniques (see Glasserman and Li, 2005, for
details) for value at risk and expected shortfall. The methods are implemented in a Gaussian
copula approach. The article proposes a complex methodology for the estimation of the two
measures on the one hand, but on the other hand data for this domain is unavailable in most
cases due to secrecy of banks. Krause and Paolella (2014) propose a method for predicting VaR
and ES which takes into account asymmetric information, leptokurtosis and heteroskedastic-
ity. They use a combination of GARCH family models and skewed t innovations, resulting in
high accuracy outcomes even for a small sample. Taylor (2020) uses both measures in a joint
estimation framework. Specific scoring functions are used in order to allocate different weights
to VaR and ES in order to forecast the loss. The results of the joint measures outperform the
ones obtained from using the individual methods. Another study that makes use of a joint
estimation of value-at-risk and expected shortfall is the one of Le (2020). The author uses a
Mixed Data Sampling (called MIDAS) framework in order to make predictions over multi-day
horizons. Its findings suggest that the mixed data approach has a higher degree of accuracy
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than traditional methods such as the ones based on GARCH-family models. Su et al. (2020)
developed a back testing procedure for both conditional VaR and conditional ES. Based on a
simulation approach, the authors prove that the new test has a good performance on a finite
sample, while being robust to fat tails.
Another category of studies focuses on methodologies for VaR estimation. One of the most

comprehensive papers is the one of Abad et al. (2014). It offers a compendium of Value-at-Risk
methodologies developed up to the year 2014 and various ways of back testing, from which
some are also used in this paper. But their study is focused more on estimation of VaR for
univariate series rather than portfolios. The study is nevertheless a valuable contribution to
the literature and a good starting point for any research in this domain. Halkos and Tsirivis
(2019) did a comprehensive review of portfolio VaR methodologies on the energy commodities
markets. In their study, the authors, summarize a series of papers from 2003 to 2017 and
compared the results. Their conclusion was that on the energy market there is no VaR model
that outperforms all others. Referring to different VaR methodologies, a comparative study was
performed by Silahli et al. (2019). Their research is similar to the one found in the current paper,
having compared different portofolio VaR models based on the variance-covariance approach,
multivariate GARCH and historical simulation. A two-sided Weibull distribution VaR model
is proven by the authors to perform well on cryptocurrency market. An application of their
methodology on other markets could have also been considered.
Some papers studied the decomposition of value-at-risk. Hallerbach (2002) acknowledges a

financial entity’s need for VaR decomposition and attempts to overcome the restrictions imposed
by assumptions of normality by proposing an approach based on simulation. The author finds
an accurate estimator that is also effi cient from a computational point of view, but the method
was tested only on options contracts. An evaluation of its performances on other types of
financial assets could have also been considered. A method of decomposing value at risk and
expected shortfall was proposed by Boudt et al. (2008). The technique was based on asymptotic
expansions and it was applied on alternative investments portfolio. Their method takes into
account asymmetric information of financial returns, but all results are obtained under the
hypotheses of continuous return distribution and constant conditional portfolio moments.
Other studies take into account the impact of shocks in the economy and optimal allocation

of financial assets. Kim et al. (2015) introduce a new tool for calculating VaR in a multivariate
environment by using a combination autoregressive vectors and quantile based models. The
study was conducted on 230 financial institutions worldwide, during January 2000 - August
2010. Their study proposes a complex and advanced methodology which help analyze the
impact that shocks in the economy have on financial institutions such as banks and insurance
companies. The method can also be used for stress testing by a financial entity or by the
regulatory authorities. It does not include however the VaR decomposition. Martellini and
Ziemann (2010) focus on higher order moments when it comes to techniques of optimal selection
of assets in a portfolio. This method is aimed at reducing the number of parameters involved
so that less data is needed for a robust estimation. Their findings suggest that the enhanced
estimates of coskewness and cokurtosis have a good performance. Jain and Chakrabarty (2019)
use a multivariate approach to estimate a marginal form of VaR in order to determine if a
financial asset is desirable in a managed portfolio. One positive aspect of their methodology is
the fact that it takes into account systematic (market) risk when estimating VaR, not just the
risk of the analyzed financial asset. Their findings suggest that if an entity is using this type of
marginal VaR in order to select the assets to be included in the portfolio, then that portfolio
will perform better.
In this study, the focus was set on estimating value at risk for a portfolio of financial assets

by the use of filtered historical simulation as in Barone-Adesi et al. (1999) and the multivariate
GARCH models estimated with methodologies proposed by Engle and Sheppard (2001) and
Cappiello et al. (2006). Also VaR is decomposed in order to assess the individual contribution
of every stock to the overall risk.
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3. Data and Methodology

For this study, a sample of 11 stocks was selected from the Romanian market and also
included in the BET index. Their symbols are FP, TLV, SNP, SNG, BRD, TGN, EL, SNN,
TEL, COTE and BVB. For the detailed list of the companies, please see Appendix 1. Initially,
the research was meant to include all 16 stocks that are currently included in the BET index,
at Bucharest Stock Exchange. However, due to lack of data, five stocks were eliminated. The
BET index is the reference index on the Romanian market and it is composed of the most liquid
stocks on the market. The data set contains information between 2014-07-08 and 2019-10-04,
resulting in 1319 daily returns per stock.
The procedures used and described below, require a complete dataset. Therefore, the missing

data were filled with the average price of the five days before and five days after with respect
to the missing daily price. However, the impact of the selected approach is minimal due to a
tiny number of missing values.1 Also, the procedure was tested with different window lengths
and the results remained the same. Then, the daily returns were calculated.
All the data was collected from the website https://www.investing.com. Also, in this study,

the portfolio was composed using equal weights of every stock. An equal weighted portfolio
might have the advantage of favoring small companies (which might yield higher returns), but
also the associated risk will be greater. Equal weighting was used in this study in order to
highlight the different contributions of risk in terms of incremental VaR and also for simplicity
reasons.
In order to estimate VaR, ten methods were selected: the first six are parametric and the

last four come from the semi-parametric area. Next, the total VaR is decomposed in individual
contributions for every stock. Then every method is back tested using a set of five tests.
The first method is based on the Riskmetrics (Morgan, 1996) portfolio theory methodology

and assumes the normality of the financial returns. VaR would be determined in the following
way:

V aRα = µ+ zασ (1)
where:
(1) µ is the mean of the portfolio return series;
(2) zα is the standard normal distribution α-quantile.
(3) σ represents the portfolio standard deviation, which is determined as:

s =
√
w′Σw (2)

where:
(1) Σ is the variance-covariance matrix of the portfolio components;
(2) w is a vector containing the weight of every stock in the portfolio.
This method is the most popular among financial entities due to its simplicity, which is why

it was chosen as a benchmark for this study.
The second method is based on the one proposed by Favre and Galeano (2002) which deter-

mine VaR using a Cornish —Fisher expansion approach. The authors called it “Modified value
at risk”. Their formula for a univariate financial return series is the following:

V aRα = ω

[
µ−

(
zα +

1

6

(
z2α − 1

)
Sk +

1

24

(
z3α − 3zα

)
Ku− 1

36

(
2z3α − 5zα

)
Sk2

)
σ

]
(3)

where:
(1) ω is the amount of money invested in a specific stock;
(2) µ is the mean of the financial returns of the previously mentioned stock;

1Missing values: SNG —1 (0.08%), EL —2 (0.15%), SNN —3 (0.23%), TEL —1 (0.08%), COTE —30 (2.27%),
BVB —8 (0.63%). For the rest of the stocks, there were no missing values.



MULTIVARIATE VAR: A ROMANIAN MARKET STUDY 83

(3) σ denotes the standard deviation of the financial returns;
(4) za represents the quantile from the standard normal distribution at confidence level α;
(5) Sk and Ku are the skewness and kurtosis of the financial return series, respectively.

This method has the advantage of taking into account the asymmetry of the financial returns.
For details about how to estimate the portfolio VaR based on equation (3), please see Boudt et
al. (2008). For simplicity, in this study it was assumed that the amount of money invested in
every stock is one monetary unit.
The next methods are parametric methods and are based on letting the variance covariance

matrix change over time, instead of assuming it constant. They are based on multivariate
GARCH family models with dynamic conditional correlation (DCC) as proposed by Engle and
Sheppard (2001) and asymmetric dynamic conditional correlation Cappiello et al. (2006).
In the case of the DCC, the authors propose a two step method: at the first step, a univariate

GARCH model is fit on every financial asset series. Then, at the second step the process
continues with the fitting of the multivariate model with the following correlation structure:

Qt =

(
1−

M∑
m=1

am −
N∑
n=1

bn

)
Q+

M∑
m=1

am
(
εt−mε

′
t−m

)
+

N∑
n=1

bnQt−n (4)

where:

(1) Q is the unconditional covariance between standardized errors which was estimated in
the first step of the process;

(2) εt−m are “residuals standardized by their conditional standard deviation”as Engle and
Sheppard (2001) explain;

(3) am and bn represent parameters to be estimated.

In the case of aDCC model, Cappiello et al. (2006) propose a modified version of the
dynamic correlation model that takes into consideration the asymmetric information. The
model is described by the following equation:

Qt =
(
P − α2P − β2P − γ2N

)
+ α2εt−1ε

′
t−1 + γ2nt−1n

′
t−1 + β2Qt−1 (5)

where

(1) P = E (εtε
′
t);

(2) N = E(ntn
′
t);

(3) nt = I [εt < 0] ◦ εt;
(4) The sign ◦ denotes the element-wise product, I [ ] is an indicator function that takes

the value of 1 when the condition εt < 0 is satisfied and 0 otherwise;
(5) εt represents standardized residuals;
(6) α, β and γ are the model parameters.

The covariance matrices obtained with the above presented models were used to estimate
VaR on a daily basis in a similar manner with the one presented in Riskmetricks. The difference
is that the variance-covariance matrix was different for every day, resulted from the dynamic
correlation models.
Four models of this type were chosen: a GARCH model as in Bollerslev (1986) in combination

with both DCC and aDCC in a multivariate approach and an APARCH model as proposed by
Ding et al. (1993) combined with the same two multivariate approaches mentioned above.
The last four models are based on a semi-parametric approach. They use the combination

of the above explained multivariate methods, DCC and aDCC, and the filtered historical sim-
ulation (FHS) introduced by Barone-Adesi et al. (1999). This method consists of four main
steps: first, one must fit a model for conditional volatility on every return series in the portfolio.
The authors recommended an asymmetric GARCH-family model. Then the realized returns
must be computed by dividing the observed return to the estimated volatilities. The third step
consists of bootstrapping with replacement a large enough number of returns from the ones
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obtained at the second step. The extracted returns will then be multiplied with the one day
ahead forecasted volatility. Then, at the last step, VaRα is extracted from the sample obtained
at the third step, at the chosen α-quantile.
In the multivariate case the portfolio return needs to be divided by the portfolio volatility.

First, a univariate GARCH-family model must be chosen, in order to fit the univariate series.
Then the process continues using one of the two approaches described above, DCC or aDCC.
Then the variance-covariance matrixes become available.
The Riskmetricks approach was used in order to obtain the simple portfolio returns in the

following manner:

Rpf,t =

N∑
i=1

wirit (6)

where:

(1) Rpf,t is the portfolio return at time t ;
(2) rit is the return of stock i at time t ;
(3) wi represents the weight of stock i in the portfolio.

The portfolio volatility σpf,t was determined in the following way:

σpf,t =
√
w′Σtw (7)

where:

(1) Σt is the portfolio variance-covariance matrix at time t obtained from DCC and aDCC
models;

(2) w is a vector containing the weights of every stock in the portfolio.

Having obtained both the portfolio returns and volatilities, the realized portfolio returns
can be computed as described previously and the FHS approach can be implemented. In this
study, 4 models have been chosen based on this approach. The first two use a GARCH model
introduced by Bollerslev (1986) in combination with DCC and aDCC methods, and the last
two the APARCH proposed by Ding et al. (1993), combined with the same two multivariate
methods.
In modeling the volatility of the financial returns time series, two of the most popular and

competing categories of models are the GARCH models and the stochastic volatility models.
Hafner and Preminger (2010) developed a procedure that chooses the best approach from the
two previously mentioned. They tested the methodology on simulated data and observed data
and concluded that the GARCH model was chosen in most cases. Another reason for which
GARCH was used consists in the simplicity of implementation.
In order to make the back testing possible, all the above mentioned approaches were used in

a rolling window manner. Given the fact that the whole sample had a length of 1319 trading
days, the window was selected to have 500 days length, thus remaining with a length 819 days
as the testing sample. In the filtered historical simulation approaches the bootstrap sample had
a length of 300 observations.
Five back testing methods were used in order to determine the VaR accuracy: the failure

rate„the unconditional coverage test proposed by Kupiec (1995), the conditional coverage test
introduced by Christoffersen (1998), the dynamic quantile (DQ) test of Engle and Manganelli
(2004) and the average quantile loss function as found in Gonzalez-Rivera et. al (2004).
The failure rate is determined by simply computing the ratio of the number of financial

returns that exceed the VaR divided by the total number of returns in the corresponding
window. If the model predicts VARα correctly the fail rate should have a value around the
chosen threshold α.
Kupiec (1995) proposed a test known in literature as the unconditional coverage test. The

test compares the proportion of exceptions above VaR that occur in a financial return series
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with the significance threshold α at which VaR is determined, in order to see if there is any
difference between the two from a statistical point of view. The likelihood ratio LRuc of the
test is:

LRuc = 2 [log ((1− α̂)
n0 α̂n1) − ((1− α)

n0αn1) ] (8)

which follows a chi-square distribution.

(1) n0 is the number of non-exceptions;
(2) n1 represents the number of exceptions;
(3) α is the threshold at which VaR is calculated;
(4) α̂ is the number of exceptions divided by the total number of observations.

The test known as the conditional coverage test was introduced by Christoffersen (1998) and
it is based on the unconditional coverage test, with the exception that it takes into account the
serial correlation present in the financial return series. The likelihood ratio LRcc of this test is
the following:

LRcc = 2 [log ((1− p̂01)n00 p̂n0101 (1− p̂11)n10 p̂n1111 ) − log ((1− α)
n0αn1) ] (9)

which also follows a chi-square distribution:

(1) n0 and n1 have the same significance as in equation (8);
(2) nij represents the total number of transitions that occur from state i to state j ;
(3) p̂ij is the probability of transition from state i to state j between two consecutive

observations, in a Markov chain manner;
(4) the states i and j can take a value of 0 or 1 meaning that an observation is a correctly

predicted VaR or an exception and parameter α represents the VaR threshold.

The null hypotheses of the conditional and unconditional correlation tests are that the VaR
model correctly predicts the series of returns.
Another test used is the one introduced by Engle and Manganelli (2004), also known as the

dynamic quantile test which will be denoted in the latter by DQ. The authors defined the Hit
function such that it will take a value 1 − α when the return is less than the VaR and −α
otherwise. The DQ statistic follows a chi-square distribution and it is given by:

DQ =
N−1Hit′X[X ′X]

−1
X ′Hit

α(1− α)
(10)

where:

(1) N is the number of the out of sample observations;
(2) Hit is a vector containing the values of the function mentioned above;
(3) α is the VaR significance level;
(4) X is a matrix which contains lagged values of Hit, lagged values of the financial return

series, and VaR values. For additional details, please see Engle and Manganelli (2004).

The quantile loss function Q of Gonzalez-Rivera et. al (2004) is also reported. The function
is defined by the relation:

Q =

T∑
t=R

(
α− Iαt+1

) (
rt+1 − V aRαt+1

)
(11)

where:

(1) Iαt+1 takes the value of 1 if rt+1 < V aRαt+1 and 0 otherwise;
(2) rt+1 is the financial return at time t+1;
(3) α is the significance threshold for VaR.
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A lower value of Q means a better fit model.
Last but not least, a portfolio decomposition method was applied in order to obtain the

contribution of every stock analyzed to the portfolio value at risk. This is one method proposed
by Mina and Xiao (2001) and it is known as incremental VaR. According to the authors, this
measure provides information about how the portfolio will look like if an investor would modify
the structure of his/her portfolio by small amounts. The incremental value at risk is calculated
in the following manner:

Inc.V aR = w

(
−µ− zα

Σw√
w′Σw

)
(12)

where:

(1) µ is the portfolio average return;
(2) zα is the α —quantile extracted from the standard normal distribution;
(3) w is the vector of weights associated with every stock in the portfolio;
(4) Σ is the variance-covariance matrix.

The incremental VaR calculus was done using the function VaR from the PerformanceAna-
lytics package for the Riskmetrics and Modified VaR approaches. In R, the incremental VaR is
implemented and known as component VaR.
For the parametric multivariate approaches the variance-covariance matrix Σ was estimated

on the daily basis using multivariate GARCH and APARCH specifications. As for the semi-
parametric methods, Σ was estimated in the same way as in the fully parametric cases and zα
was replaced with the realized returns as described by Barone-Adesi et al. (1999).
All calculations were done in R environment using the following packages: PerformanceAna-

lytics, rmgarch, xts and GAS. For the purpose of this article, equal weights were used when the
portfolio was constructed. As stated before, this allows an intuitive comparison of the different
contributions of every stock to the overall risk in terms of incremental VaR. Through the course
of this paper, the significance threshold α was considered 1% due to the fact that the value
represents a standard for high rating (as in Moody, FITCH etc.) financial entities. The 5%
significance level is also a standard value, but it is used by companies with lower ratings.

4. Results

This section presents the empirical results obtained by analyzing the data sample. Table
I below presents the descriptive statistics for the daily returns of the eleven stocks during
2014-07-08 and 2019-10-04.

Table I —Summary statistics of daily returns
Stock Mean Median Std_Dev Min Max Skew Kurt
FP 0.00026 0 0.01082 -0.06970 0.04652 -0.90333 8.62616
TLV 0.00049 0 0.01705 -0.22211 0.10523 -2.79511 36.21542
SNP -0.00010 0 0.01539 -0.13890 0.10017 -0.43585 9.65767
SNG 0.00006 0 0.01342 -0.15234 0.05166 -2.90537 26.19479
BRD 0.00031 0 0.01544 -0.18172 0.10338 -1.78606 23.51975
TGN 0.00043 0 0.01358 -0.13931 0.06677 -1.87881 20.31259
EL 0.00000 0 0.01271 -0.10636 0.05987 -0.60919 6.42958
SNN 0.00036 0 0.01397 -0.19106 0.10479 -2.06798 32.80821
TEL -0.00012 0 0.01332 -0.09706 0.07498 -0.77652 8.74013
COTE 0.00036 0 0.01714 -0.28659 0.13799 -3.21237 67.61629
BVB -0.00011 0 0.01270 -0.07274 0.08038 0.40278 4.72591

Source: own computations in R environment

Even though the means are very close to zero and the standard deviations are rather low,
it is noticeable that most of the stocks have a left-asymmetric behavior compared to a nor-
mal distribution, a typical characteristic for financial asset returns series. Also, the values of



MULTIVARIATE VAR: A ROMANIAN MARKET STUDY 87

the kurtosis show a high deviation from a normal distribution, all indicating a higher peaked
empirical distribution.
Table II presents the results of the five back testing methods, failure rate the unconditional

coverage test —UC (Kupiec, 1995), the conditional coverage test —CC (Christoffersen, 1998),
the dynamic quantile test —DQ (Engle and Manganelli, 2004) and the Loss function (Gonzalez-
Rivera et. al, 2004) respectively.

Table II —Results of VaR back testing methods
Model Fail_rate UC_Pval CC_Pval DQ_Pval Loss

Riskmetrics 1.829% 0.03245 0.07675 0.05993 0.00043494
Modified VaR 0.244% 0.00910 0.03316 0.29167 0.00054135
GARCH-DCC 1.220% 0.54137 0.73336 0.00270 0.00036479
GARCH-aDCC 1.098% 0.78221 0.87092 0.92204 0.00036143
APARCH-DCC 1.585% 0.12059 0.24305 0.00008 0.00035742
APARCH-aDCC 1.220% 0.54137 0.73336 0.78223 0.00034940
FHS-GARCH-DCC 0.854% 0.66573 0.85756 0.98442 0.00043263
FHS-GARCH-aDCC 0.854% 0.66573 0.85756 0.97139 0.00042622
FHS-APARCH-DCC 0.732% 0.41746 0.68866 0.88348 0.00042632
FHS-APARCH-aDCC 0.854% 0.66573 0.85756 0.98356 0.00043407

Source: own computations in R environment
Note: Fail_rate=Failure rate,

UC_Pval = P-value of Kupiec’s (1995) unconditional coverage test
CC_Pval = P-value of Christofersen’s (1998) conditional coverage test

DQ_Pval = P-value of Dynamic Quantile test of Engle and Manganeli (2004)
Loss = Value of the loss function of Gonzalez-Rivera et al. (2004)

The null hypothesis of the above tests (UC- unconditional coverage, CC —conditional cover-
age, DQ-dynamic quantile) is that the model predicts VaR correctly. A p-value lower than 0.05
threshold shows the rejection of this hypothesis. In case of the loss function the best model is
the one with the lowest value.
In all cases, VaR was estimated at 1% significance threshold; therefore the failure rate of a

model is expected to be around the value of 1%. The Riskmetrics approach was considered a
benchmark for this study and it also has the highest failure rate.
The Modified VaR has the lowest fail rate and one could argue that it should be considered

the best method. However, it is actually overestimating the risk and it fails both the conditional
and unconditional coverage tests. It also has the highest loss value which would put it on the
last place according to this criterion.
Out of the pure parametric models, the best one seems to be the GARCH-aDCC. It’s fail-

ure rate has the smallest difference from the threshold of 1% and it performs best at the
unconditional and conditional coverage tests overall. The other parametric models tend to
underestimate the risk a bit, but they also yield good results, except for the APARCH-DCC
which is too far from the 1% threshold.
In the case of semi-parametric approaches, all of them tend to slightly overestimate the risk,

but apart from FHS-APARCH-DCC which yielded the worst result, the other ones, perform
rather well. The identical failure rate is due to the small bootstrap sample size. The window was
chosen to have 500 observations and the bootstrap window length had 300 observations. The
best models are the ones that used GARCH for the univariate specifications. They perform
well on all 3 statistical tests and the one which takes into account* the asymmetry on the
multivariate level also has the lowest loss.
As for the risk decomposition part, Table III contains summary statistics of the daily con-

tribution series on the back testing period. Graphs with the contributions, in percentages, of
every stock to the portfolio VaR, for the entire test sample are also included in Appendix 2.
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The graphs are displayed for GARCH-aDCC and FHS-GARCH-aDCC models; the rest of them
can be provided at request.
The table below contains the average contribution, the median contribution, the minimum

and maximum contributions, respectively for every stock, on the back testing period. For
most of the stocks in all models, the mean values are above their corresponding medians which
indicate the possibility of extreme values. For some stocks the maximum contributions reach
very high levels, fact most visible at COTE stock. Also, the pure parametric models seem to
generate higher extremes compared to their semi-parametric equivalents. This is visible in the
graphs included in appendix 2. Therefore, the results shown in table III strengthen the ones
from table II, namely the filtered historical simulation approaches perform better than their
pure parametric counterparts.

Table III —Results for contribution (%) of stocks to portfolio VaR
Riskmetrics Modified VaR

Stock Mean Median Min Max Mean Median Min Max
FP 0.060 0.056 0.037 0.085 0.079 0.082 0.020 0.124
TLV 0.112 0.121 0.084 0.143 0.079 0.089 -0.048 0.254
SNP 0.108 0.110 0.088 0.122 0.098 0.144 0.012 0.155
SNG 0.088 0.087 0.072 0.105 0.070 0.066 0.022 0.121
BRD 0.105 0.109 0.084 0.132 0.094 0.063 0.049 0.210
TGN 0.094 0.093 0.074 0.122 0.082 0.082 0.070 0.088
EL 0.082 0.081 0.063 0.100 0.086 0.091 0.060 0.112
SNN 0.086 0.086 0.067 0.097 0.033 0.011 -0.027 0.094
TEL 0.086 0.086 0.076 0.098 0.069 0.071 0.056 0.091
COTE 0.117 0.105 0.068 0.170 0.272 0.065 0.034 0.660
BVB 0.061 0.060 0.050 0.073 0.039 0.028 -0.037 0.124

GARCH_DCC GARCH_aDCC
FP 0.055 0.051 0.019 0.268 0.055 0.051 0.021 0.264
TLV 0.124 0.125 0.019 0.185 0.123 0.124 0.018 0.184
SNP 0.112 0.109 0.028 0.197 0.112 0.108 0.031 0.196
SNG 0.099 0.103 0.022 0.127 0.099 0.103 0.025 0.126
BRD 0.111 0.107 0.035 0.354 0.111 0.106 0.039 0.343
TGN 0.091 0.085 0.034 0.306 0.091 0.085 0.034 0.300
EL 0.088 0.086 0.029 0.156 0.088 0.087 0.030 0.159
SNN 0.081 0.070 0.022 0.423 0.081 0.069 0.026 0.422
TEL 0.087 0.080 0.033 0.400 0.087 0.080 0.033 0.397
COTE 0.084 0.075 0.033 0.676 0.084 0.075 0.033 0.642
BVB 0.068 0.071 0.011 0.089 0.069 0.071 0.010 0.091

APARCH_DCC APARCH_aDCC
FP 0.058 0.053 0.025 0.263 0.058 0.053 0.023 0.252
TLV 0.124 0.121 0.013 0.215 0.124 0.121 0.013 0.216
SNP 0.111 0.109 0.023 0.193 0.111 0.108 0.031 0.190
SNG 0.088 0.087 0.021 0.147 0.088 0.087 0.027 0.167
BRD 0.109 0.108 0.016 0.188 0.108 0.107 0.024 0.188
TGN 0.089 0.084 0.048 0.322 0.089 0.084 0.047 0.316
EL 0.092 0.091 0.027 0.169 0.092 0.091 0.035 0.175
SNN 0.083 0.077 0.014 0.291 0.083 0.077 0.019 0.287
TEL 0.092 0.085 0.030 0.447 0.092 0.085 0.033 0.441
COTE 0.086 0.080 0.032 0.770 0.086 0.080 0.031 0.699
BVB 0.068 0.065 0.008 0.189 0.069 0.066 0.007 0.195
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FHS_GARCH_DCC FHS_GARCH_aDCC
FP 0.068 0.060 0.039 0.107 0.070 0.060 0.039 0.110
TLV 0.111 0.109 0.094 0.125 0.111 0.109 0.092 0.123
SNP 0.106 0.108 0.093 0.116 0.105 0.107 0.092 0.115
SNG 0.073 0.073 0.056 0.084 0.072 0.073 0.057 0.084
BRD 0.110 0.109 0.102 0.122 0.109 0.109 0.101 0.122
TGN 0.109 0.103 0.091 0.161 0.109 0.104 0.090 0.160
EL 0.073 0.068 0.063 0.089 0.073 0.067 0.063 0.089
SNN 0.098 0.107 0.059 0.121 0.099 0.107 0.059 0.124
TEL 0.090 0.090 0.081 0.104 0.091 0.091 0.080 0.103
COTE 0.113 0.103 0.073 0.183 0.110 0.100 0.070 0.188
BVB 0.048 0.049 0.037 0.056 0.051 0.050 0.040 0.058

FHS_APARCH_DCC FHS_APARCH_aDCC
FP 0.060 0.053 0.033 0.091 0.063 0.055 0.033 0.098
TLV 0.113 0.115 0.091 0.135 0.112 0.114 0.093 0.133
SNP 0.108 0.110 0.089 0.124 0.107 0.109 0.089 0.120
SNG 0.080 0.084 0.065 0.093 0.079 0.083 0.063 0.092
BRD 0.108 0.106 0.094 0.127 0.108 0.106 0.094 0.126
TGN 0.112 0.108 0.088 0.161 0.112 0.107 0.090 0.160
EL 0.067 0.065 0.058 0.080 0.067 0.065 0.055 0.081
SNN 0.073 0.073 0.051 0.088 0.077 0.076 0.052 0.093
TEL 0.084 0.085 0.072 0.102 0.086 0.087 0.072 0.100
COTE 0.142 0.132 0.089 0.227 0.134 0.126 0.069 0.219
BVB 0.051 0.050 0.045 0.058 0.056 0.054 0.047 0.065

Source: own computations in R environment

According to Mina and Xiao (2001) the incremental VaR (also known as component VaR) in
its absolute value can be interpreted as the profit and loss for a certain position in the portfolio.
Therefore, if a certain sum is invested in stock j, a negative incremental VaR for the same stock
is interpreted as a diminishing of the overall risk by the amount or percentage indicated. In this
analysis, only the modified VaR approach yielded negative incremental VaR (it can be observed
among the minimum values in Table III, at the corresponding method) for certain periods.
However, this approach is proven to be ineffi cient by Martin and Arora (2017) because, as the
authors present, the modified VaR estimators yield inflated standard errors.
From the analyzed sample, COTE seems to have the highest contribution while BVB has the

lowest. The “shape”of the contributions differs according to the estimation method used. As
expected, the models that use a constant variance-covariance matrix have a flatter appearance
and the ones with dynamic variance-covariance matrix tend to be more “spiked”. The filtered
historical simulation approaches are the best at identifying significant structural modifications
in the portfolio and the periods with higher risk for certain portfolio components. An investor
could use such an analysis in order to adjust the weights of his portfolio components.
The current paper is focused on finding an accurate method for estimating Value-at-risk and

to decompose it in order to assess the risk contribution of every asset in the portfolio. The
study was conducted on a sample of 11 stocks from the Romanian market.
Another relevant study for VaR estimation is the one proposed by Silahli et al. (2019).

Their paper is similar to the present one. They also compare VaR Models that take into ac-
count historical simulation, variance-covariance approaches and DCC models. However their
best approach is one based on a combination of historical simulation with a GARCH model and
innovations that follow a two-sided Weibull distribution, while in our study the best models are
the parametric GARCH-aDCC and the FHS-FARCH-DCC. Three of the back testing methods
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used in both, this study and Silahli et al.’s (2019) paper are indentical: Kupiec’s (1995)uncon-
ditional coverage test, Christofersen’s (1998) conditional coverage test and Dynamic Quantile
test of Engle and Manganeli (2004).
Another difference between the two studies is that in the present paper filtered historical

simulation by Barone-Adesi et al. (1999) is used instead of simple historical simulation. In the
right combinations, filtered historical simulation yields some of the best results as proven above
in this section.
Silahli et al. (2019) did not take into consideration the use of asymmetric DCC while we

explored that possibility. However, they analyze the cryptocurrency market while our study is
focused on the stock market which is known for the asymmetry of financial assets returns.
Lu et al. (2014) combined copula methods and GARCH models in order to determine VaR

in a Monte Carlo simulation approach. Their dataset consists of oil and natural gas options
and futures contracts from the New York Mercantile Exchange during January 1998 - December
2009. They used some of the same tests we use in order to evaluate VaR: Kupiec’s (1995) un-
conditional coverage test, Christofersen’s (1998) conditional coverage test and Gonzales-Riviera
(2004) loss function. Our study includes asymmetry specific models and equally weighted port-
folios, similar to Lu et al.’s (2014). The difference lies in the use of aDCC- GARCH instead
of copulas-GARCH classes of models. Also the Monte Carlo simulation is not present in our
study.
Other recent studies like Babat et al. (2017) propose an algorithm to help construct a “near-

optimal”VaR portofolio i.e. to allocate the weights optimally. The authors test their method
on a sample with 30 to 90 financial assets from the US financial market. Even though the
method is very innovative and futuristic, the algorithms are only approximating the optimal
VaR as the authors stated. A conservative investor might prefer an approach that allows more
manual control over the portfolio allocation, like the ones evaluated in the present study, which
were tested on equal weighted portfolios in order to easily observe the risk contribution for
every asset individually (from an incremental VaR perspective).
Al Janabi et al. (2019) use a copula based liquidity portfolio VaR measure. Taking liquidity

into account provides an advantage due to the fact that it reduces the risk of underestimating
the losses as they point out. Their study was conducted on commodities, gold and Bitcoin
markets from the G-7 countries group. The present study is different than the study of Al
Janabi et al. (2019) since our paper does not take liquidity into account and it was focused
only on a frontier stock market, but testing the methods used in this paper on other types of
markets could be a subject for a future study.
Jang and Park (2016) present a model which optimizes the portfolio choice taking into ac-

count a Value-at-Risk constraint and the concept of model uncertainty. Their complex method-
ology is more applicable to a fund manager in comparison to the methods presented in this
paper which could be used by an investor on the stock market.
Most of the studies referred to in this section do not use the DCC/aDCC approach and none

use the combination of filtered historical simulation and the multivariate GARCH we focus
on in this paper in order to estimate VaR. In addition, the use of the incremental VaR helps
highlight the risk contribution of every financial asset to the overall portfolio. However, the
main disadvantage of our paper is the limited data on which the methods were tested. An
extension of the data sample could provide a starting point for future research.

5. Conclusion

This study focused on filling a small literature gap, in estimating VaR, by the use of multi-
variate asymmetric DCC models and by combining them with filtered historical simulation for
a portfolio of financial assets. The rolling window approach was used in order to make back
testing possible. Then a decomposition analysis was performed in order to assess the contribu-
tion of every stock to the overall VaR. Ten Value-at-Risk models were analyzed: the first was
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the Riskmetrics approach which was also considered a benchmark, the modified VaR, 4 versions
of parametric multivariate VaR and 4 models using semi-parametric approaches.
The filtered historical simulation methods provided good results in most of the combinations.

The best model is the one that uses GARCH for the univariate series and takes asymmetry into
account on the multivariate level; this model has the lowest loss from the FHS category.
The modified VaR was better than the benchmark model, but as the results have shown,

it overestimates the risk too much. As for the parametric approaches the best one would be
GARCH-aDCC.
When it comes to VaR decomposition, all models identify the riskier components in the

portfolio, but the FHS approaches also help identify the periods in which a stock presents a
higher degree of risk.
The study also has limitations, firstly due to the nature of the data set; enough data could

only be obtained for 11 stocks from the Romanian Market between 2014-07-08 and 2019-10-
04, resulting in 1319 observations. The bootstrap window of 300 observations for the filtered
historical simulation approaches is rather small. This method might have yielded better results
if it was applied on longer time series. Also, longer data series could prove useful to enlarge the
rolling window for all approaches. This could be a subject of a future study.
The VaR models presented here also have practical implementations. One possible applica-

tion would be for an investor to use the methods discussed in this article for constructing its
own portfolio, given the fact that the total possible loss can be decomposed and associated with
every single portfolio component.
They can also be used by banks and similar financial entities in order to mitigate their

foreign exchange and market risks and even for stress testing. In money-lending institutions
the VaR methods could be used for economic capital calculation. The methodologies presented
in this paper may have an impact in how financial institutions may set limits (according to
their internal policy) with respect to the level of risk they are willing to accept. For example,
a financial institution may not accept an investment in a certain asset if its contribution to
the overall risk would be higher than an a priori fixed threshold (i.e. no component from the
entity’s portfolio is allowed to exceed the individual risk threshold). But this is not restricted
to individual risks. Overall portfolio limits could also be established.
Regulatory authorities could make use of such Value-at-Risk measures in order to impose

thresholds and benchmarks to the financial environment’s participants. When it comes to
policy, regulators often set limits regarding the amount of risk a financial institution is allowed
to take in, but the methods that should be used in order to comply with the restrictions, are
not always imposed or specified. Therefore, a financial entity may choose its own. A bank or a
similar institution may opt for FHS-GARCH-aDCC in order to manage its current and future
market and foreign exchange risks.
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6. Appendix 1: List of companies included in the study

Symbol Name Sector of activity
BRD BRD - GROUPE SOCIETE GENERALE S.A. Banking
BVB BURSA DE VALORI BUCURESTI S.A. Financial sector
COTE CONPET S.A. Natural gas industry
EL SOCIETATEA ENERGETICA ELECTRICA S.A. Energy industry
FP FONDUL PROPRIETATEA Financial sector
SNG S.N.G.N. ROMGAZ S.A. Natural gas industry
SNN S.N. NUCLEARELECTRICA S.A. Energy industry
SNP OMV PETROM S.A. Oil industry
TEL C.N.T.E.E. TRANSELECTRICA Energy industry
TGN S.N.T.G.N. TRANSGAZ S.A. Natural gas industry
TLV BANCA TRANSILVANIA S.A. Banking

7.
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8. Appendix 2: Contribution to VaR in percentages




