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DOES TRADING VOLUME EXPLAIN THE INFORMATION FLOW OF
CRUDE PALM OIL FUTURES RETURNS?

YOU-HOW GO AND WEE-YEAP LAU

ABsTrRACT. This study examines the role of trading volume in the crude palm oil (CPO)
futures market as a proxy for information flow from the perspective of the mixture-of-
distributions hypothesis (MDH). Using the data from January 2000 to April 2017, a sym-
metric GARCH model has been estimated, in which the residuals follow alternatively the
normal Student-t and generalised error distribution. An alternative augmented model that
consists of trading volume as an exogenous variable is estimated with the same error dis-
tributions. Our results suggest several conclusions: First, the trading volume could not act
as a true proxy for information flow. This indicates that volume of futures trading contains
relatively less price-sensitive information. Secondly, the inclusion of trading volume into the
conditional variance equation with Student-t distributed errors is important for modelling
purposes when the returns are leptokurtic and positively skewed. Hence, it can be concluded
that the use of return and trading volume will enhance the current information set used
by practitioners and analysts in pricing the CPO futures contract when there exists a high
degree of leptokurtosis in the returns. This is the first study that validates the MDH in the
context of the CPO futures market.

1. INTRODUCTION

The knowledge of investors’ reaction to unobservable information arrival within different
financial markets has long been discussed in finance. Several scholars have put forward that
trading volume is generally thought to be a proxy for information flow in reflecting market
returns and providing a signal of informed trading (Lamoureux and Lastrapes, 1990a; Blume et
al., 1994; Hiemstra and Jones, 1994; Suominen, 2001; Le and Zurbruegg, 2010). To forecast the
price movement, the explanatory power of trading volume to price variability mainly focused
on stocks, which generally can be held over many years to reduce volatility through portfolio
diversification. It is different for commodities, where the price is sensitive to global forces
of supply, demand and occasional natural disasters that shorten the trading duration. This
indirectly increases volatility in commodity markets.

Against these unpredictable phenomena, futures contracts are often used by investors to form
expectations not only about fundamental directly but also about market reaction for the delivery
of commodities in the future. Furthermore, hedging strategies and risk avoidance through the
usage of the futures contract are of great importance, especially during uncertain periods (Go
and Lau, 2014; Go and Lau, 2015). The arrival of new information usually causes investors
to change their expectations about the future price. However, a change in their belief about
the future price does not mirror the information content of news in all cases. To determine
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whether there is a significant response from the financial markets, trading volume is thought
to reflect the differences in price reaction of investors to unexpected events. Hence, trading
volume is an important supplement of futures price behaviour when the information flow to the
market is continuous. To date, the role of trading volume in transmitting new information flow
is still debatable concerning market reaction when the return exhibits asymmetric distribution.
In other words, how does the trading volume of commodity futures markets drive information
transmission channel of returns that show different degrees of skewed distribution?

One of the ways to tackle the question is to rely upon the inclusion of an essential variable
in the conditional variance equation that entails the reduction of volatility persistence. Within
the market, the role of trading volume in transmitting information over time is subject to
volatility persistence. In that sense, its presence contributes to the reduction of volatility
persistence which has been recognised as the arrival of new information. This suggests that
trading volume conveys information in prices to reflect the noise movement of prices that cannot
be obtained from historical price data itself. Fundamentally, the marked reduction can be
explicitly explained by the mixture-of-distributions hypothesis (MDH) that attracts the most
attention. This is reflected more in stock markets as commonly thought can provide companies
with access to capital in exchange for giving investors a slice of ownership (Clark, 1973; Epps,
1975; Epps and Epps, 1976; Tauchen and Pitts, 1983; Harris, 1987; Lamoureux and Lastrapes,
1990a; Lamoureux and Lastrapes, 1994; Richardson and Smith, 1994; Foster, 1995; Bollerslev
and Jubinski, 1999; Lobato and Velasco, 2000; Liesenfeld, 2001; Choi et al., 2012; Carroll and
Kearney, 2012).

The study focuses on crude palm oil (CPO) because it currently holds the largest share of
the edible oil market in the world. There is an estimated 90 per cent of the total production of
CPO would be allocated for food consumption, whereas the remaining 10 per cent for industrial
use such as material in cosmetic or fuel product (Malaysian Palm Oil Board, 2015). Indirectly,
any changes of this proportion will lead to a change in futures prices and cause a deviation
from the inflationary expectation, and eventually will impact on the food security (Food and
Agricultural Organization of the United Nations, 2011).

Our study attempts to make two contributions to the existing literature. First, we focus on
the role of trading volume in the process that generates return and volatility in the commodity
futures market. Unlike most studies, we emphasize such a role in the context of CPO instead
of other non-perishable commodities because market participants normally encounter high per-
ception of risk inherent in buying or selling specific perishable commodities. This usually makes
them unable to effectively hedge their own futures positions with CPO futures contracts traded
in the exchange. Therefore, from the perspective of MDH, it is worth to validate whether
the volume of CPO futures trading can account for the flow of information which is entirely
unobservable to market participants.

Second, the contribution that distinguishes our study from others is distributional assump-
tions in volatility modelling. By considering trading volume, we estimate the model of con-
ditional variance for returns with nesting several well-known error assumptions, namely the
normal Student-t and generalised error distributions. This allows us to explore the impact of
distributional assumptions on the model fitting process with the presence of trading volume as
an exogenous variable. In this regard, we can determine whether incorporating trading volume
into the model with a certain distributional assumption can produce unstable and potentially
explosive volatility or more reasonable and realistic dynamics for the return.

This study provides an improved understanding in terms of how commodity market partici-
pants react to new information arrival which can be explored by separating the sample period
into different regimes of returns. On the modelling side, the examination using a model spec-
ification based on the normal distribution has become questionable. Notably, the conditional
distribution of returns during a specific sub-period often appears to be skewed and contains
a persistent amount of leptokurtosis. An incorrect distribution may cause model misspecifi-
cation and fail to fit a particular stylized fact of returns, leading to sizeable loss of efficiency
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of corresponding parameter estimates. For instance, Agnolucci (2009) finds that the models
with non-normal distributions perform better in capturing crude oil volatility than those with
a normal distribution.

Returns are asymmetrically distributed, implying the existence of different outlooks among
market participants towards the arrival of new information. It has been suggested in the
empirical studies that a market tends to have overreaction or/and underreaction to bad or
good news (Fama, 1998; Barberis et al., 1998). Two statistical measures can detect the market
reaction, one by skewness that captures different attitudes towards bad or good news, the other
by kurtosis that captures different levels of overreaction or underreaction. For instance, Do et
al. (2014) find that trading volume being a source of heteroscedasticity in asset returns, but it
provides a less significant impact on the level of negative skewness of returns.

One empirical phenomenon worth mentioning is that statistical measures can be used to
identify regime shifts in higher moments of returns and adequately specify a generalised autore-
gressive conditional heteroscedasticity (GARCH) model. In specific conditional autoregressive
models nesting the GARCH, inconsistent estimators may result from the presence of asym-
metric distribution in the conditional error density (Newey and Steigerwald, 1997). Although
maximum likelihood estimators are consistent and asymptotically normal under mild condi-
tions, the efficiency of estimators is subject to an error distribution. For instance, theoretical
evidence from Gonzdlez-Rivera and Drost (1999) shows that efficiency of maximum likelihood
estimators depends on kurtosis and skewness of the conditional error density.

Our study attempts to estimate the conditional variance model for returns with the normal
Student-t, and generalised error distributions. Specific properties of GARCH processes can be
matched with a particular form of the error distribution to clarify whether a shock in trading
volume is persistent in reducing the volatility of returns over time. To measure the influence of
trading volume on the volatility of returns, we compare a univariate model that captures the
presence of stylized facts in returns against an alternative augmented model that consists of
trading volume as an exogenous variable.

Perhaps more importantly, our findings are expected to benefit investors and financial ana-
lysts. For investors, they can use knowledge of trading volume for improvement of their short-
run return forecasts if trading volume plays a role of information flow. Since trading volume
is thought to be driven by identical factors that generate volatility of returns, it is particularly
relevant to technical analysis in providing insights on quality of information contained in price
statistics. Thus, this may result in more informed decision making. If the estimates appear
to be unbiased in the presence of trading volume, financial analysts can consider incorporating
trading volume in the GARCH model for significant improvement of the fit of their model. In
order to allow for a leptokurtic and skewed return, an adequate distributional assumption on
errors for the model estimation seems to be crucial in improving variance forecasts. There is
an important implication for them to manage hedging and trading strategies.

The remaining of this study is organised as follows. Section 2 presents an overview of CPO
futures market, followed by the literature review. Section 4 describes the data and methodology.
Section 5 discusses the empirical results, and the last section concludes the study.

2. OVERVIEW OF CPO FUTURES MARKET

In Malaysia, oil palm is recognised as one of the golden crops that contributes to the develop-
ment of agricultural sector. With the growing importance of palm oil in the country’s economy,
the producers need to have stable price for the crop. To guard against the price fluctuation,
the CPO futures contract was introduced from October 1980 for hedging purposes. The CPO
futures trading facilitates the process of efficient price discovery for producers, suppliers and
buyers.

As shown in Table 1, the consumption of palm oil is found to increase from 57.31 9 million
metric tonnes in 2013/14 to 62.9 million metric tonnes in the last five years. In 2017/18, it is
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forecasted that palm oil and palm kernel oil jointly contribute to 70.13 million metric tonnes
(37 per cent) of the worldwide consumption of edible oil.
Table 1: Worldwide consumption of edible oil (million metric tonnes), 2013-2018

Table 1: Worldwide consumption of edible oil
(million metric tonnes), 2013-2018
2013/14 | 2014/15 | 2015/16 | 2016/17 | 2017/18*

Palm oil 57.31 58.69 59.28 59.97 62.92
Soybean oil 45.27 47.83 52.15 53.62 55.99
Rapeseed oil 26.17 27.29 28.18 29.22 29.35
Sunflower seed oil 14.14 14.11 15.18 16.52 16.79
Palm kernel oil 6.58 7.22 6.81 7.02 7.21
Peanut oil 5.68 5.51 5.44 5.77 5.99
Cottonseed oil 5.09 5.06 4.4 4.38 4.93
Coconut oil 3.34 3.29 3.26 3.17 3.22
Olive oil 2.97 2.64 2.81 2.63 2.64
Note: * denotes forecasted values.

Source: Statista (2018).

With substantial contribution of palm oil in the global market as compared to other edible
oils, the role of information in CPO futures trading is important for the overall smooth func-
tioning of the market. Therefore, this study attempts to investigate the role of information in
the CPO futures market empirically.

3. LITERATURE REVIEW

The MDH represents an intuitive and appealing explanation for the empirically observed
relationship between return and trading volume. Most existing studies provide support on
such a hypothesis which suggests that trading volume can serve as a proxy for information
flow to reflect the volatility of returns contemporaneously. Many alternative models have been
proposed incorporating the leptokurtic feature for returns in explaining the contemporaneous
relationship between return and trading volume. In general, the literature takes four lines of
explaining how such a relationship depends jointly upon information flow.

The first line originates from Clark (1973) who puts forth the MDH. He states that a sto-
chastic process in price changes allows information to be transmitted simultaneously along with
trading volume across any periods. To explain such a process in capturing speculative pressure
in the price movement, he develops a subordinated stochastic volatility model with the vari-
ance and finds that market returns should be predictable by an unobserved non-constant rate
of information arrival. As a result, a high trading volume would increase the variance of price
changes.

The second line of the contemporaneous relationship arises not from a common event or a
directing variable as information flow, but it is from the existence of heterogeneity of trading
behaviour. Epps (1975) examines the price-volume relation under bull and bear markets. If
information arrival leaves investors to react differently to market shocks in the subsequent
period, it often leads to a partial adjustment in the market price towards the new information.
To describe the magnitude of overall price changes due to different levels of disagreement among
traders, Epps and Epps (1976) develop an alternative formulation of the equilibrium model of
intraday price determination, where price changes follow mixture of distributions and trading
volumes act as a mixing variable.

To further support the widespread application of the equilibrium model, Tauchen and Pitts
(1983) state that the potential number of information arrivals should be serially uncorrelated
with traders’ sensitivity to new information. Based on daily data of 1976-1979 for T-bill futures
prices, they develop a standard bivariate mixture model, and their model shows that price and
trading volume are positively related to the unobservable mixing variable. This indicates that a
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high variance of the daily rate of information flow provides a strong contemporaneous correlation
between absolute price changes and trading volumes. From this insight, their model becomes a
standard version for the MDH.

By using daily data of IBM and Kodak stocks, Liesenfeld (2001) points out from the esti-
mation results that the short-run volatility dynamics are directed by new arrival process, while
the long-run dynamics are associated with traders’ sensitivity to the arrival of new informa-
tion. Due to this, a standard bivariate mixture model should allow the number of information
arrivals to be serially correlated with traders’ sensitivity to new information. The author takes
the leverage effect and different volume-volatility dynamics into account to extend the model to
be the generalised mixture model. As compared to the standard model, the author’s extended
model is found to provide a better explanation for the behaviour of volatility. In the case of
the Korean stock market, Choi et al. (2012) use an exponential GARCH model and find that
the effect of bad news on return volatility is much more significant than good news. This effect
subsequently contributes to a contemporaneous relationship between return and trading volume
during 2000-2010.

The third line that concerns the joint time-series behaviour of return and volume volatilities
is the explanatory power of trading activities on return volatility. The work by Lamoureux
and Lastrapes (1990a) include daily trading volume as an exogenous variable into the ARCH
model in explaining the variance of daily returns for the 50 largest companies in the United
Kingdom. Their results show that including trading volume ceases the ARCH effect on the con-
ditional variance of returns. This suggests that trading volume acts as a proxy for information
arrival, providing significant explanatory power on return volatility. Using a mixture model
that accounts for the serial correlation between volume and volatility of return, Lamoureux,
and Lastrapes (1994) relax the assumption of the exogenous amount. When serial dependence
on information arrival process is taken into consideration, their results show that incorporating
trading volume cannot eliminate the volatility persistence of stock returns.

To reduce the number of parameters in the mixture-of-distributions model for stock prices,
Richardson and Smith (1994) impose restrictions on parameters in the joint moments of price
changes and trading volumes under the conditional normality. They further propose a direct
test of the MDH under weak assumptions on the daily flow of information to the market.
To conduct the analysis, they use the generalised method of moments (GMM) to estimate
characteristics of the random distribution of unobservable information flow. They find that
small coefficient of variation, positive skewness, large kurtosis and lognormal distribution can
fit the data well. In the subsequent study, Sharma et al. (1996) find that the inclusion of
volume into the conditional variance equation can explain the GARCH effects in stock returns,
but it cannot eliminate such effects.

The MDH holds when the trading volume has little additional explanatory power for the
subsequent price changes. However, this is somehow different as compared to Lucey’s finding
(2005) based on 52 stocks during 2000-2003 in the context of the Irish stock exchange. The
author’s finding provides the evidence that is weakly in favour of the MDH, suggesting that
trading volume does not appear to be important in explaining the volatility of the Irish market.
By using the firm-level data for the 20 most substantial Fortune 500 stocks, Carroll and Kearney
(2012) estimate three GARCH model specifications without trading volume and the other three
model specifications with trading volume. Their results indicate that contemporaneous trading
volume significantly reduces and eliminates the persistence of GARCH effects for return. In
this vein, they claim that the MDH holds in most cases.

Lastly, the fourth line of explanation about the contemporaneous relationship between price
and trading volume can be taken from the perspective of a possible information arrival process
with long memory characteristics. For instance, in examining the behaviour of trading volumes
and volatilities among the selected firms from the Standard & Poor’s 100, Bollerslev and Jubin-
ski (1999) use multivariate spectral methods to describe the long-run temporal dependencies in
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volume and volatility. Their results demonstrate that a fractionally integrated process well de-
scribes such characteristics of both series and produces long-run hyperbolic decay rate for each
volume-volatility. This suggests that high commonality in the degree of fractional integration
for each pair is consistent with the stylized MDH model.

Another study that supports such a finding is the application of the robust semi-parametric
procedures by Lobato and Velasco (2000), where they find that volatility and volume for thirty
stocks in the Dow Jones Industrial Average index exhibit the same degree of extended memory.
In contrast, with the use of the model that allows for power transformations of both series,
Ané and Ureche-Rangau (2008) find a high degree of intermittency in the volatility of return
and volume dynamic appears to be much smoother among fifty ‘blue-chip’ stocks quoted on the
London Stock Exchange. Their findings of universal short-term movement and fundamentally
different long-run behaviour of both series provide the rejection of MDH.

However, a search of commodity futures markets that supports the MDH turns up remarkably
little in the literature. For instance, Foster (1995) uses the GMM technique to model the
contemporaneous relationship between volume and volatility in the case of Brent and WTI
crude oil futures markets. Based on daily data of 1990-1994, his results show that both trading
volume and return volatilities are contemporaneously related, supporting the MDH. However,
although the same information drives both series, the results do not provide strong evidence to
indicate that trading volume is an adequate proxy for the rate of information flow.

For copper, aluminium, soybean and wheat futures markets in China, Chen et al. (2004)
perform correlation analysis and Granger causality test. Their finding based on daily data of
1996-2002 shows that absolute return and trading volume in these markets are contemporane-
ously correlated. Biswas and Rajib (2011) find that this contemporaneous correlation happens
in Indian gold, silver, and crude oil futures markets during 2005-2009.

To investigate the information arrival hypothesis in the Malaysian CPO futures market, Go
and Lau (2016) use a non-linear approach based on cross-correlation functions. They use daily
data of 1986-2010 and find that dependence causality in the conditional variance happens from
the current return to future volume with different signs of correlation between price and volume
series. Their finding of price-volume interaction indicates that volatility of volume is not a proxy
for information flow due to the presence of noise traders. This finding is further supported by
Go and Lau (2020) who take the 2008/09 global financial crisis (GFC) into account. They
find that volatility persistence in post-GFC is higher than Pre-GFC. The volatility of trading
volume in post-GFC requires a more extended period to Granger cause volatility of return.
This increases volatility persistence, thereby reducing the level of informational efficiency. This
finding supports the “heterogeneity of traders” hypothesis, suggesting that market participants
are more risk-averse after the crisis.

This narrow focus can limit our understanding of different aspects of participants’ reactions
in the context of commodity markets. It is worth to examine the true extent of MDH in futures
markets for perishable commodities through the conditional variance specification with different
assumptions of the error distribution. This is our emphasis in the case of CPO to close the
research gap.

4. DATA

Daily data comprise price (Malaysian ringgit per metric ton and trading volume (metric ton
of 3-month CPO futures contracts over January 2000 - April 2017. These data are extracted
from Bursa Malaysia and Thomson Datastream, the first difference is used to transform the
futures price into return using natural logarithm at time t (R_t). Daily trading volume is
converted into natural logarithm(V_t). Given the more extended period, there is a higher
probability of existing structural shifts in the return movement. Indeed, it is known that model
specifications without considering structural breaks tend to overestimate volatility persistence
(Lamoureux and Lastrapes, 1990b). To provide a visual representation of possible structural
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breaks, daily CPO futures returns and trading volume from January 2000 to April 2017 are
plotted in Figure 1.
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Figure 1: Daily return and trading volume for CPO futures market, January 2000 - April 2017

Figure 1 illustrates the corresponding daily return and trading volume for the CPO futures
market, where on the left axis is related to returns and those on the right is related to trading
volumes. Through optical observation of graphed data for trading volume, it is clear that an
apparent upward trend is visible with a significant variation during the whole sample period.
This variation in a trading activity appears to be more prone to speculative activities.

For the futures return, three notable structural changes are present in its movement. The
first structural change occurred from January 4, 2000 to January 13, 2006. This structural
change was marked by relatively high volatility at the beginning of sample period. However,
the volatility declined markedly following the implementation of the Malaysian National Biofuel
Policy since January 13, 2006 that promotes the commercialization. The next structural change
occurred from January 16, 2006 to June 18, 2010. There were several spikes in its movement
between 2007 and 2010 associated with the 2008/09 global financial crisis (GFC). The fluctu-
ation started to decrease from June 18, 2010 onwards, signaling the end of the GFC. The last
structural change occurred from June 18, 2010 to April 28, 2017, indicating that the movement
of CPO futures return was more stable towards the end of the sample period. Overall, this
observation shows there is an extremely strong persistence in variance of CPO futures returns.

To avoid the spurious appurtenance of persistence in variance, the sample period is separated
into several sub-periods according to the above three main structural changes of CPO futures
returns. Each sub-period would correspond to each structural change of returns. The identified
sub-periods are Panel A (January 4, 2000 - January 13, 2006), Panel B (January 16, 2006 -
June 18, 2010) and Panel C (June 21, 2010 - April 28, 2017). The preliminary glance at tail
behaviour is viewed through quantile-quantile (Q-Q) plots as shown in Figure 2.

Panel A: January 4, 2000 - January 13, 2006

Panel B: January 16, 2006 - June 18, 2010

Panel C: June 21, 2010 - April 28, 2017
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Panel A: January 4, 2000 - January 13, 2006

o' o' 12 4 s b 7 b b 10

Panel B:January 16, 2006 - June 18, 2010

08

06 i 1

04

02

0o

~02

~04

06

0s
- 08 12 6 7 8 9 10

Panel C:June 21, 2010 - April 28, 2017

06 112

0a <~ 10.8 -

Figure 2: Normal and empirical distributions quantile-quantile plots

For graphical illustration in Figure 2, CPO futures returns for all panels exhibit a non-normal
distribution with heavier tails. The lowest outlier is observed in Panel B and Panel C. For the
trading volume (Panel A), more outliers are evident at a high end of the range. In Panel B
and Panel C, the outliers are visible at lower left and upper right corners. These outliers of the
trading volume are above the line, indicating that the skewing is to the left.

4.1. Descriptive statistics. Table 2 provides the summary statistics that includes the skew-
ness, kurtosis, Jarque-Bera (JB) test for normality, Ljung-Box Q-test for autocorrelation of
squared residuals (Q2) and augmented Dickey-Fuller (ADF) test for a unit root. The JB test
confirms that a daily CPO futures return is not normally distributed, showing evidence of
skewness and excess kurtosis.

Table 2: Summary statistics

Panel A Panel B Panel C

January 4, 2000 - January 13, 20 January 16, 2006 - June 18, 20 June 21, 2010 - April 28, 2017

R v R Y% R \Y%
Skewness 0.283 -0.514 -0.3226 -0.8385 -0.128 -0.539
Kurtosis 6.279 2.667 5.7 3.998 4.302 3.323
Jarque-Bera test 684.339%** 72.236%** 351.618%*** 173.748%*** 123.922%** 89.038***
Q2 (15) 316.12%** 69.628*** 756.34%%* 111.4%*% 118.06%** 24.285%
Observations 1483 1483 1095 1095 1688 1688

Augmented Dickey-Fuller (ADF) unit root test:

drift | -38.557%%*(0) -3.622%%%(8) S34.97TFFF(0) | -5.166%¥*(7) | -39.757F**(0) | -5.58%%%(T)

drift with trend | -38.544%%%(0) -6.473%%%(5) S34.987%¥%(0) | -7.006%**(5) | -39.749%**(0) | -10.6%**(4)

Notes: R and V denote daily futures return trading volume. For the Jarque-Bera test, the null hypothesis states that a series
is normally distributed. For Ljung-Box Q-test on the autocorrelation of squared residuals up to 15 lags, the null hypothesis states
that the data are not serially correlated. For the ADF test, the null hypothesis states that a series has a unit root. ***denotes
the null hypothesis is rejected at the 1% level. The optimal lag length for ADF unit root testing is reported in ( ).

As observed, a daily return is positively skewed in Panel A, suggesting that risk is rather
small in the market. Meanwhile, it is turned to be negatively skewed in Panel B and Panel C
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due to the 2008/09 global financial crisis and the 2014 oil crisis. These events further contribute
to extreme deviation in the variance of a series and subsequently lead to a high peak and fat
tail. In Panel B, it is observed that returns exhibit high degrees of leptokurtosis and negative
skewness. This suggests that market participants face a chance of extremely high losses.

For a daily trading volume, the results for all panels show evidence of a non-normal dis-
tribution with a negative skewness. In Panel A, its kurtosis is low (platykurtic). In Panel B
and Panel C, the distribution is found to have large leptokurtosis. In all panels, the return
is found to have relatively fatter tail than trading volume, suggesting that the movement of
return is sensitive towards large and repeatedly occurring events as compared to the movement
of trading volume.

Two required features for both series should be emphasised in investigating the usefulness
of MDH. The first feature is the existence of autoregressive heteroscedasticity in both series.
The Ljung-Box Q-test for autocorrelation of squared residuals is performed up to 15 lags for
each set and it indicates that both series are autocorrelated. The square of returns is found to
have greater autocorrelations by magnitude and significance than trading volumes. The second
feature is the existence of a stationary movement of both series. The ADF unit root test is
performed based on two auxiliary models, namely the model with a drift and without trend as
well as the model with both drift and trend. In all cases, the results of both models provide
the rejection of the null hypothesis of a unit root for both series at the 1% level, implying that
both series display stationarity.

Table 3 lists the events that occur during the sub-periods for Panel A, Panel B and Panel C.
These events are related to policy implementation. These events affect the magnitude of CPO
futures price changes. In Panel A, the Malaysian government launched policies in 2001. These
policies influence CPO production and investors’ reactions. Their reactions through hedging
strategies frequently change CPO futures price for some time, thereby contributing to a large
magnitude of futures price changes from 2000 to 2005.

In Panel B, we observe that several events that relate to the financial crisis and climate
increase the magnitude of futures price changes dramatically. As seen in Figure 1, CPO futures
returns highly fluctuate during the period of 2007/10 global financial crisis. The occurrence of
such a crisis coincides with the declining consumption growth of palm oil. This figure suggests
that the declining income level in some developing countries during the crisis cause a reduction
in their food consumption on "luxuries" like fat and edible oil-related products. For weather
climate, deficient rainfall and drought during El-Nino cause the disruption of harvesting and
collecting activities, thereby producing low yields in the future.

Although a further increase in CPO price is recorded at the end of 2010, low CPO production
with an increase in export demand leads to a reduction of palm oil stocks. In Panel C, we observe
that several events relate to policy implementation. For example, banning palm oil products by
the Australian government, reduction of export taxes on palm oil products by the Indonesian
government and the rejection of the Environmental Protection Agency in the United States on
palm-oil based biodiesel are a few of the challenges.

Overall, there is a sign of changing the conditional variance of returns. CPO futures prices
are seen to be more sensitive to financial crisis and climate instead of policy implementation.
Climate changes and natural disasters impact the supply and demand for commodities, whereas
these phenomena may not have an impact on equities directly.

The tail property cannot be obtained from the perspective of skewness and kurtosis, especially
for kurtosis which is difficult to capture by a mathematical model. Therefore, we perform the
model estimations under the normality, Student-t and generalised error distributions to obtain
the persistence of skewness and high excess kurtosis in the daily returns.
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Table 3: Episodes for Malaysian palm oil

Panel A: January 4, 2000 - January 13, 2006

Jan 2001

Federal Land Development Authority (FELDA) was the largest
upstream player who has contributed to 17.7% of the total
planted area and 20.6% of palm oil produced in Malaysia.
Malaysian Government has approved 1 million tonnes of the vol-
ume of duty-free CPO export for selected companies exporting
CPO include Austral Enterprises Berhad, Golden Hope Plan-
tations Berhad, Kuala Lumpur Kepong Berhad and IOI Cor-
poration Berhad.

Dec 2001

Malaysia was the world’s largest exporter of palm oil, account-
ing for about 61.1% or 10.62 million tonnes of the total exports
of 17.37 million tonnes.

Panel B: January 16, 2006 -

June 18, 2010

Mar 2006

The government has launched the National Biofuel Policy (NBP
2006) for development of national biodiesel activities.

Dec 3, 2007- Jan 31, 2008

Zero export of Malaysian biodiesel.

Jan 2007- Dec 2010

The consumption growth of palm oil has reduced from 9.8% in
2007/08 to 8.5% in 2008/09. This growth further declined to
4.5% in 2009/10.

Jul 1, 2008 - Sept 30, 2008

Oil returns were strongly correlated with daily returns for most
commodities traded in futures markets due to the financial cri-
sis.

Nov 11, 2008 - Dec 18, 2008

Palm oil export was dropped from RM13,504 million to RM9,
271 million due to heavy rainfall and lower fresh fruit bunches.

Oct 3, 2008 - Oct 31, 2008

Oil returns were strongly correlated with daily returns for most
commodities traded in futures markets due to the financial cri-
sis.

Jan 2008- Dec 2009

Palm oil and its derived products have declined from RM65.19
billion to RM49.59 billion due to lower average price all around.

Jan 2009 Companies in the palm oil industry have been moved to down-
stream.
Dec 2009 BMB entered into the partnership with the Chicago Mercantile

Exchange (CME) Group which led to an acquisition of an equity
interest in Bursa Malaysia Derivatives (BMD) Berhad. The
partnership included the licensing of the settlement prices of
the CPO futures to CME and the trading of BMD Berhad’s
product offering through the CME Globex electronic trading
platform.

Jun 2009 - May 2010

Palm yields have been reduced during the El-Nino event.

Dec 31, 2009

Total CPO futures contract traded has increased from 3,003,549
contracts to 4,008,882 contracts steadily with the rising demand
from both China and India.

Jan 2010 - Dec 2010

Palm oil stocks were reduced from 2,239,257 tonnes to 1,615,618
tonnes by 27.85%. This decline was mainly due to lower CPO
production by 3.3% coupled with an increase in export demand
by 4.9%.
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Panel C:June 21, 2010 - April 28, 2017

Jul 2010- Apr 2011 Palm yields have been increased during the La-Nina event.
Jan 2011- Dec 2011 The government of Australia claimed that palm oil produced
unhealthy food-related products.

Mar 2011 - Dec 2011 CPO yields rose significantly.
Apr 2011 - Jun 2011 The sharp improvement in CPO demand coincided with a more

substantial premium for soybean oil than CPO.

Oct 2011 The government of Indonesia has reduced export taxes for re-
spective refined, bleached and deodorised (RBD) palm oil and
RBD palm stearin from 11% and 7.5% to 5%. For RBD palm
olein, an export tax was reduced from 12.5% to 7%.

Jan 2012 The Environmental Protection Agency in the United States re-
jected palm-oil based biodiesel for Renewable Fuels Program
because it failed to meet a requirement in reducing emissions
relative to conventional gasoline by 20%.

Dec 2012 An imposition of a 300% tax on palm oil, popularly dubbed as
the “Nutella Tax” was gunned down.

Dec 2013 18.6% of Malaysian palm oil exports were made up of upstream
products as compared to the 81.4% of exports comprising up-
stream products.

Dec 2014 Palm oil prices fell by 6% due to high stock and expectation on
low demand for biodiesel.

Source: Teoh (2002), United Nations Development Program (2009), Central Bank of Malaysia (2009), Malaysian Palm Oil
Board (2010, 2011), Oil World (2010), Economic Transformation Programme (2013), Bursa Malaysia Derivatives (2014), Inter-

national Monetary Fund (2015) and World Bank (2015).

5. METHODOLOGY

5.1. Model specification. Our study uses the autoregressive moving average (ARMA) model
to explain the conditional mean of a series and adjust the serial autocorrelation. However, this
model is unable to take volatility persistence appropriately into account as the volatility of a
series fluctuates over time. To capture the stylized facts in the market, the GARCH models
of Engle (1982) and Bollerslev (1986) are used. The detailed empirical specification of the
univariate ARMA-GARCH model for returns is constructed as:

P1 P2
Ry =ao + E a;Re—; + g bier,t—i + ERr,t, Where eg; = ZR,t\/U%7t (1)
i—1 i=1
P3 P4
he=w+ ) ik + ) Biot (2)
ORpt =W QER t—i iOR t—i
i—1 i=1

where zp ; is the unconditional variance of a daily return at time ¢, U%’t is the conditional
variance of a daily return at time ¢ and €r is the unexpected daily return that cannot be
predicted based on all information available up to the preceding period.

The symmetric GARCH framework is chosen instead of asymmetric GARCH frameworks due
to two reasons. First, the use of asymmetric GARCH model specification such as the exponential
GARCH (EGARCH) requires statistical properties of the maximum likelihood estimator which
are not available under general conditions, but under highly restrictive and unverifiable sufficient
conditions. This lack of an invertibility condition for the shocks underlying the model happens
because the condition for asymmetry seems to have been ignored or concentrated on an incorrect
condition with no clear explanation from the literature (Chang and McAleer, 2017; Martinet
and McAleer, 2018). Second, the GARCH specification can be used to comply with the principle
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of parsimony and provide adequate representation in a manner for most financial time series
which is consistent with the stylized facts of conditional volatility.

The correct regularity conditions for Quasi-Maximum Likelihood estimators in Equation
(2) to be consistent, reliable and asymptotically normal are w > 0, a; > 0 and S, > 0 and

P3 P4
0 < (> a;+ > 8;) < 1. These sufficient invertibility conditions allow an estimator for the static
=1 =1

parameter vector can be able to estimate the time-varying parameter consistently. As a result,
there is a possibility of recovering the true path of the time-varying parameter (Wintenberger,
2013). These established strong consistency, and asymptotic properties of maximum likelihood
estimators guarantee the conditional and unconditional variances of a GARCH model to be
positive definite and finite, respectively.

Even if similar results of maximum likelihood estimators can be obtained in models with
exogenous variables, the existence of simultaneity bias remains as an open question. To solve
simultaneity bias in the conditional variance for returns, Harvey (1989) suggests a lagged one
of trading volume (V;_1) should be included to represent a contemporaneous volume which is
classified as a mixing variable. The augmented model given by Equation (3)-(4) is so-called as
the ARMA-GARCH-X.

P1 P2

Ry =ao + ZaiRtﬂ' + ZbiER,tﬂ' +€ry, where epy = ZR,m/G%,t (3)
i=1 i=1
P3 P4
Oy =w+ Zai‘g%,t—i + Zﬁio'?%,t—i + 70 Ve + 71 Vi (4)
i=1 i=1

Incorporated V;_; as shown in Equation (4) is used to represent a contemporaneous trading
volume. Its inclusion is consistent with the MDH if the trading volume is serially correlated
with the daily number of information arrival to the market. It is evident from a significant
coefficient of v; with a positive sign and no serial correlation problem, as well as a marked
reduction in volatility persistence of return. This suggests that trading volume acts as a proxy
for information flow to the market and reflects return volatility.

To examine the relationship between return and trading volume in the context of the
Malaysian futures market, Lau and Go (2012) and Go and Lau (2016) adopt a conventional
GARCH model specification which is based on the normality assumption without considering
different regimes of returns. However, their way of examination becomes questionable if returns
often appear to be skewed and contain the persistent amount of leptokurtosis across time. To
capture such a behaviour, we attempt to seek to what extent the following standardised error
distributions can enhance the model adequacy.

5.2. Standardized error distributions

There are three settings for the distribution of standardised error (zg ;). The first setting
of zg, is drawn from the standardised normal distribution with conditional mean zero and
time-invariant variance. Thus, the probability density function for the standardised normal
distribution is given by Equation (5).

2Ry ~dd.d. N (0,1)

252
F(Zns) = \/%exp < gt) (5)

Maximum likelihood estimators of the parameters in the GARCH model with the standard-
ised distribution are obtained by maximising the following log-likelihood function as Equation

(6)-
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(R — pg)*
L () =-05(In2r +Ino%, + ——5 1 (6)
OR,t

where Ulag, a;, b;, ¢, ;, 5;,7] is the vector of parameters to be estimated, and the degree of
freedom is v.

If a stylized fact of returns after accounting for conditional heteroscedasticity with the
GARCH model, residuals may be still leptokurtic. This fact is due to misspecification of
the error term distribution that may lead to negativity assumptions of GARCH process or/and
explosive volatility in any estimation. To capture more degree of leptokurtosis, Blattberg and
Gonedes (1974) specify the Student-t distribution with v > 2 degrees of freedom. In partic-
ular, a t-distribution with any degrees of freedom has power tails. A lower value of v, more
extreme the degree of leptokurtosis. Furthermore, the tails of the distribution tapper off at a
much slower rate than tails of the normal distribution. To examine return volatility in crude oil
markets, Cheong (2009), Marzo and Zagaglia (2010) and Hou and Suardi (2012) use GARCH
models with the Student-t distribution.

This distribution is symmetric around zero, where the variance acts as a random variable,
but it is fatter than the latter. This symmetric distribution of a random variable with zero
mean and unit variance is fatter than the normal distribution. As v approaches infinite, the
t-distribution converges to the normal distribution with o?. Then, the probability density
function of standardised errorsis modelled by Equation (7).

zpy ~ i.4.d. t(0,1,v)

v+l 22 T2
f(zre) = Ffrr()) (v =2) 7 (h) 7 (1 + m) 7)

where T" (+) is the gamma function.

Let T be an independent and identical standard Student-t distribution. The Student-¢
distribution is obtained if the variance of normal follows an inverted gamma distribution. The
log-likelihood function of GARCH models with the Student-t¢ distribution is written as Equation

(8).
2122,t
“ (aR <v—2>>] 8

Since returns exhibit fatter or thinner tails than the normal density in most cases, there will
be a possible violation of the normality assumption of the error term. To capture a series which is
non-normally distributed, Box and Tiao (1973) specify the generalised error distribution (GED).
In modelling a GARCH effect, Nelson (1991) is found to consider such an error distribution.
Then, it is followed by Zhong et al. (2004) who use exponential GARCH models with a similar
distribution to examine volatility for futures trading of the Mexican Price and Quotations
Index. For a random variable to have a GED with zero mean, constant variance and the tail
parameter of v, such a variable must satisfy the following probability density function as shown
in Equation (9).

F(L;l)) 1 — +1
L) =T1 — - S me%, — LT N
(%) =Tl VAl (D) Vo—2| 2 ; noh, = 5= In

t=1

) . 27277 (1/v)]
with A = [ A
0% A22+1/0)T (1) I'(3/v)

,where v > 0 9)
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When the GED parameter value of v is equal to 2, the probability density function will turn
to be a standard normal distribution. When the GED parameter value of v is lesser than 2, the
density would have a fatter tail than the normal density. Lastly, the parameter value of v which
is more than 2 signifies a thinner tail than the normal density. The log-likelihood function of
GARCH models with the GED setting is expressed as Equation (10).

3 LN2\ 3
L(¢)=—05n ﬂ —05In0%, — r(3) (w—x0) (10)

r(3) @)’ 7 (3)

6. EMPIRICAL RESULTS

Table 4, Table 5 and Table 6 present the results of ARMA-GARCH-type estimation for
futures returns in Panel A, Panel B and Panel C, respectively. In all panels, returns are
found to have significant ARCH and GARCH terms along with positive coefficient values. This
indicates that a large shock in the return to its current variance increases its future variance,
thereby increasing its shock in the subsequent period. The magnitude of «; shows that the
impact of unexpected returns on the subsequent volatility, while the coefficient of 3; shows the
tendency for shocks to the conditional variance to persist. By comparing the significance of
the coeflicients’ values for a; and (; in all panels, the most substantial impact of unexpected
returns to the subsequent conditional variance is found in Panel B (as shown in Table 5). Then,
it is followed by Panel A (as shown in Table 4) and Panel C (as shown in Table 6).

In each panel, test statistics for Q% (15) and ARCH-LM indicate that GARCH models
are free from serial correlation. Besides, these model specifications also fare well in terms of
accounting for heteroscedasticity and changing unconditional or conditional variance in returns.
To determine whether the model specification can provide stable estimates, it is necessary to
measure the degree of persistence in the conditional variance process by summing coefficients
for ARCH and GARCH terms (a3 + ;).

As shown in Table 4, the normal and generalised error distributed GARCH-type estimations
provide the sum less than unity, meaning that the effect of the volatility process vanishes over
time at an exponential rate.

Table 4: Estimates of the GARCH model for futures returns without trading volume

as an exogenous variable in Panel A: January 4, 2000 - January 13, 2006

Normal Student-t GED
Coef. Std error Coef. Std error Coef. Std error
w 1.74x10~ % [ 6.4x10~7 | 7.75x10~7 | 6.96x10~7 | 1.01x10~% | 7.99x10~7
o 0.073%** 0.0072 0.0676%** 0.0125 0.0692%** 0.0115
B4 0.9232%%* 0.0085 0.9331%** 0.012 0.9296*** 0.0122
a1 + 54 0.996 1.001 0.9988
Q?(15) 13.994 [0.526] 13.436 [0.569] 13.627 [0.554]
ARCH — LM | 1.737 [0.188] 1.3654 [0.2426] 1.517 [0.218]

Notes: *** ** and * indicate the level of statistical significance at 1%, 5% and 10%, respectively. Volatility persistence is
measured by the sum of ARCH and GARCH coefficients. Q2 (15) denotes the Ljung-Box test statistics for autocorrelation of
squared standardised residuals up to 15 lags. ARCH-LM stands for the Lagrange multiplier test for autoregressive conditional

heteroscedasticity. All p-values are reported in [ ].

The use of Student-t distributed GARCH-type model does not bring satisfactory results
even though ARCH and GARCH coefficients remain significant. This is evidenced by the
sum which is more than unity. This may be due to the spillover effects of events in Panel A
that have a more powerful effect in the near future than the distant one , thus making a return
distribution unable to portray the fat tail syndrome. Under misspecification of the distribution,
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the estimation would display explosive variance. In Table 5, the explosive variance that is often
obtained with the GARCH-type estimations might result from the impact of memory actually
increasing over time rather than slowly fading. This apparent persistence in return volatility
leads to extreme deviation in the movement of returns as observed in Figure 1. This suggests
that return volatility cannot go back to normal levels, especially following the 2008/09 global
financial crisis. In Table 6, the GARCH-type estimations under three error distributions show
the stationary and persistent impact of shocks. With the stationary persistence of returns,
volatility in Panel C (as shown in Table 6) is found to persist relatively lower than the volatility
in Panel A (as shown in Table 4).

Table 5: Estimates of the GARCH model for futures returns without trading volume
as an exogenous variable in Panel B: January 16, 2006 - June 18, 2010
Normal Student-t GED
Coef. Std error Coef. Std error Coef. Std error
w 1.87x10~% | 6.9x10~7 | 1.71x10~%* | 7.39x10~7 | 1.81x10~%* | 7.5x10~7
Qg 0.1041%%* 0.0152 0.0989%*** 0.018 0.1019%*** 0.0175
51 0.8973*** 0.0133 0.9024*** 0.0157 0.8993*** 0.0153
a1 + 5, 1.0013 1.0013 1.0012
Q2(15) 22.79 [0.089] 23.36 [0.077] 22.9 [0.09]
ARCH — LM | 0.835 [0.361] 0.599 [0.439] 0.734 [0.392]

Notes: *** ** and * indicate the level of statistical significance at 1%, 5% and 10%, respectively. Volatility persistence is
measured by the sum of ARCH and GARCH coefficients. Q2 (15) denotes the Ljung-Box test statistics for autocorrelation of
squared standardised residuals up to 15 lags. ARCH-LM stands for the Lagrange multiplier test for autoregressive conditional

heteroscedasticity. All p-values are reported in [ ].

Table 6: Estimates of the GARCH model for futures returns without trading volume

as an exogenous variable in Panel C: June 21, 2010 - April 28, 2017

Normal Student-t GED
Coef. Std error Coef. Std error Coef. Std error
w 4.7x10° %% | 1.76x10° % | 4.45x10~%* | 1.89x107 % | 4.66x10~%* | 1.82x10~©
a 0.0523*** 0.0088 0.0489%** 0.0113 0.0519%** 0.0097
B4 0.9235%** 0.0156 0.9279%** 0.0179 0.9241%%* 0.0164
a + B4 0.9758 0.9768 0.976
Q?(15) 8.852 [0.885] 9.0122 [0.877] 8.8608 [0.885]
ARCH — LM | 0.243 [0.622] 0.4097 [0.522] 0.2581 [0.611]

Notes: *** ** and * indicate the level of statistical significance at 1%, 5% and 10%, respectively. Volatility persistence is
measured by the sum of ARCH and GARCH coefficients. Q2 (15) denotes the Ljung-Box test statistics for autocorrelation of
squared standardised residuals up to 15 lags. ARCH-LM stands for the Lagrange multiplier test for autoregressive conditional
heteroscedasticity. All p-values are reported in [ ].

Table 7, Table 8 and Table 9 present the results of ARMA-GARCH-X model for futures
returns in Panel A, Panel B and Panel C, respectively. This model includes a lagged one of
trading volume as an exogenous variable in modelling the conditional variance of returns. The
adequacy of a model specification is further assessed using the Ljung-Box Q test on squared
standardised residuals (Q? (15)) and ARCH-LM test. The results show that these augmented
models sufficiently explain non-linear sources of variation in returns by adequately accounting
a serial correlation of the data in the first and second moments.
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Table 7: Estimates of GARCH-X model for futures returns with a lagged one of trading volume

as an exogenous variable in Panel A: January 4, 2000 - January 13, 2006

Normal Student-t GED
Coef. Std error Coef. Std error Coef. Std error
w 1.57x107°** | 5.50x107% | 1.01x107° | 1.41x107° | 8.59x10~% | 1.41x107°
o 0.07%** 0.0079 0.0660%** 0.0132 0.0671%** 0.0123
B 0.9248%** 0.0092 0.9329%%* 0.0128 0.9301%** 0.013
" -1.81x10~ 5% [ 7.04x10~7 | -2.10x10~5** [ 1.04x107 6 | -1.96x10~5* | 1.02x10~©
ar + B4 0.9948 0.999 0.9972
Q?(15) 15.099 [0.444] 14.89 [0.459)] 14.92 [0.458)
ARCH — LM | 2.176 [0.140] 1.995 [0.1578] 2.07 [0.150]

Notes: *** ** and * indicate the level of statistical significance at 1%, 5% and 10%, respectively. Volatility persistence is
measured by the sum of ARCH and GARCH coefficients. Q2 (15) denotes the Ljung-Box test statistics for autocorrelation of
squared standardised residuals up to 15 lags. ARCH-LM stands for the Lagrange multiplier test for autoregressive conditional

heteroscedasticity. All p-values are reported in [ ].

Table 8: Estimates of GARCH-X model for futures returns with contemporaneous and lagged

trading volumes as exogenous variables in Panel B: January 16, 2006 - June 18, 2010

Normal Student-t GED
Coef. Std error Coef. Std error Coef. Std error
w 8.597x10~% [ 1.41x107° | 1.69x10~%* |8.24x107C | 1.61x10~°** | 8.05x10~©
o 0.0991%** 0.0174 0.0965%** 0.0179 0.0991 ¥ 0.0174
B4 0.9006%** 0.0167 0.9042%** 0.0171 0.9006*** 0.0167
Yo 2.40x107°*** | 6.01x107° | 2.36x107°*** | 6.03x107° | 2.40x107>*** | 6.01x10~°
1 -2.5x10 7% [ 6.96x10~ ¢ | -2.5x10~°*** | 6.96x10 0 | -2.5x10~°*** | 6.96x10~ 0
a + B4 0.9997 1.001 0.9997
Q?(15) 17.910 [0.267] 18.243 [0.250] 17.91 [0.267]
ARCH — LM | 0.658 [0.417] 0.553 [0.457] 0.658 [0.417]

Notes: *** ** and * indicate the level of statistical significance at 1%, 5% and 10%, respectively. Volatility persistence is
measured by the sum of ARCH and GARCH coefficients. Q2 (15) denotes the Ljung-Box test statistics for autocorrelation of
squared standardised residuals up to 15 lags. ARCH-LM stands for the Lagrange multiplier test for autoregressive conditional

heteroscedasticity. All p-values are reported in [ ].

Table 9: Estimates of GARCH-X model for futures returns with a lagged one of trading
volumeas an exogenous variable in Panel C: June 21, 2010 - April 28, 2017
Normal Student-¢ GED
Coef. Std error Coef. Std error Coef. Std error
w 7.54x1077 [ 1.37x107° | 4.60x10~7 [ 1.56x107° | 7.06x107 | 1.42x107°
a1 0.0524*** 0.0089 0.0489%** 0.0114 0.0519%** 0.0098
B4 0.9225%** 0.0158 0.9271%** 0.0181 0.9232%%** 0.0166
" 4.21x1077 | 1.47x1070 | 4.25x1077 [ 1.63x107% | 4.22x1077 | 1.47x10°
a1 + 54 0.9749 0.976 0.9751
Q2(15) 8.9599 [0.88] 9.122 [0.871] 8.969 [0.879]
ARCH — LM | 0.203 [0.652] 0.3595 [0.549] 0.217 [0.641]

Notes: *** ** and * indicate the level of statistical significance at 1%, 5% and 10%, respectively. Volatility persistence is

measured by the sum of ARCH and GARCH coefficients. Q2 (15) denotes the Ljung-Box test statistics for autocorrelation of
squared standardised residuals up to 15 lags. ARCH-LM stands for the Lagrange multiplier test for autoregressive conditional

heteroscedasticity. All p-values are reported in [ ].
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In Table 7, the inclusion of a lagged one of trading volume is found to be significant along with
both significant ARCH and GARCH terms. This shows the existence of volatility persistence
in the CPO futures returns. In Table 8, incorporating a lagged one of trading volumes is
found to bias the regularity and non-negative condition, providing the negative value of an
intercept term. To guarantee the existence of the conditional variance with the positive value
of an intercept term, a contemporaneous trading volume is suitable to be inserted into the
conditional variance equation (Lucey, 2005; Carroll and Kearney, 2012). Under an assumption
of all error distributions, the coefficients of 7, are statistically significant at the 1% level with
positive values, providing that evidence of a positive contemporaneous relationship between
return and trading volume. Apart from this relationship, changes in trading volume would
contribute to significant information in reflecting the return movement in the future. In Table
9, incorporating a lagged one of trading volume in the conditional variance of returns is found to
be insignificant along with significant ARCH and GARCH terms. This is due to the movement
of trading volumes does not systematically correspond to returns. When analysing the sub-
period in Panel A and Panel C, a contemporaneous trading volume is not incorporated into the
analysis to comprehend the model specification in line with the principle of parsimony.

For more insights about the role of trading volume, we compare the robustness of a univariate
model with an augmented model. The results of estimated GARCH and GARCH-X models for
futures returns are summarised in Table 10. As observed in Panel A, the normaland generalised
error distributed-GARCH models are well specified regardless of the existence of trading volume
as an exogenous variable. The underlying distribution for CPO futures returns is thicker than
the normal distribution given that the GED parameter is 1.384. The inclusion of trading volume
into the GARCH model slightly increases the value of a significant estimated GED parameter to
be 1.3853. This suggests that an included trading volume under a GED distribution is adequate
to capture the fat-tails in futures returns. Conversely, ignoring the effect of trading volumes on
returns would lead to slight overestimation on volatility persistence of returns.

Table 10: Summary of estimation results for futures returns

Model without an exogenous variable Model with an exogenous variable
ARCH GARCH v GED Volatility ARCH GARCH 14 GED Volatility
parameter | persistence parameter | persistence

Panel A: January 4, 2000 - January 13, 2006

Normal HAH HoAx - - 0.996 HAK HH - SveXEE 0.9948
Student-T HRE HEx 6.4%** - 1.001 HAK *AK 6.33%%* -veX* 0.999
GED HAH Hokx - 1.384%%* 0.9988 HAK HAH - -ve* 0.9972

Panel B: January 16, 2006 - June 18, 2010

Normal HokE HoAx - - 1.0013 HA K HokE - +vert* 0.997
Student-T Fxk Fork 15.56%* - 1.0013 Hokk Fxk 18.66** +veXF* 1.001
GED HRE Hork - 1.758%** 1.0012 HAK HRE - +vert* 0.9997

Panel C:June 21, 2010 - April 28, 2017

Normal b Hokx - - 0.9758 Hokok FHok - +ve 0.9749
Student-T ok ok 99 7Rk B 0.9768 ok ok 22.704 +ve 0.976
GED k% ok * k% _ 1(932*** 0976 * ok ok k% k - +ve [)()751

Notes: “Sign” denotes the sign of coefficient for trading volume. V stands for degrees of freedom for the Student- t distribution.
#%%k k% and * indicate that the level of statistical significance at 1%, 5% and 10%, respectively. Volatility persistence is measured
by the sum of ARCH and GARCH coefficients.

Surprisingly, the Student-¢ distributed-GARCH model without considering the effect of trad-
ing volume on returns is not well specified because it provides explosive variance (persistence
level of 1.001). Inclusion of trading volume into the conditional variance of returns is able
to improve model specification, based on the level of stable persistence (0.999). This inclu-
sion slightly reduces the significant estimated parameter of v from 6.4 to 6.33. The Student-t
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distributed-GARCH model with an augmented trading volume as an exogenous variable is
found. To capture leptokurtosis with positive skewness in CPO futures returns appropriately.
The presence of such a variable in the model can produce stable estimates and appear to be
useful in risk forecasts, especially for risk-averse participants.

Nevertheless, the model that consists of trading volume performs slightly better, where its
results do indicate the lagged term of trading volume negatively influences the conditional
volatility of returns. An essential attribute of such an effect is the existing traders with a
higher degree of informed trading. As observed in Figure 1, an increasing trading volume in the
CPO futures market is due to the fact that Malaysia exports the substantial amount of palm
oil in the world that generally boosts liquidity. This is a symptom of the fact that the market
is dominated by liquidity traders who consider others to be less well-informed than they are.
With such overconfidence, they tend to underreact to the information contained in the trading
decisions of others, thereby reducing volatility.

In Panel B, it is shown that the parameter estimates in the standard GARCH models under
three distributions are unstable as the sum between coefficients of ARCH and GARCH terms
exceeds one. Under the standard and generalised error distributions, the inclusion of contempo-
raneous and lagged trading volumes into the conditional variance equation marginally reduces
the degree of persistence of returns to be stable, as well as slightly increases the value of signif-
icant GED parameter from 1.7584 to 1.806. This suggests that the absence of trading volume
would lead to an overestimation of volatility persistence.

Under the Student-t distribution, a relatively sizeable estimated v of 15.56 implies that the
leptokurtosis of the conditional distribution does not account for a significant amount of residual
leptokurtosis, thereby leading to unstable parameter estimates. This implies explosive volatility
dynamics or simply a poorly fitting model. Including both contemporaneous and lagged trading
volumes into the model, explosive variance still turns out as compared to those obtained from
the GARCH model estimation even if there is a slight reduction of degrees of persistence. This
can be demonstrated by the increase of the estimated v from 15.56 to 18.66, implying that
the existence of a fat tail for returns. Since returns exhibit high excess kurtosis and negative
skewness as shown in Table 2, including an exogenous variable into the Student-t distributed-
GARCH model still cannot allow parameter estimates to do a better job of capturing volatility
dynamics of returns.

However, including trading volume as an exogenous variable into the normaland generalised
error distributed-GARCH models provides a significant positive effect on the conditional volatil-
ity of returns. This effect indicates that an increasing trading volume leads to more available
information in the market. However, trading volume cannot wipe out the volatility persistence
of returns since its inclusion in the model still provides significant ARCH and GARCH effects.
This evidence of a slight reduction in volatility persistence of returns is weakly in favour of the
MDH, indicating that trading volume adds little to the information which is already discounted
in CPO futures prices. Furthermore, the CPO futures market mostly stays in backwardation
instead of contango. To “overreact” to the new arrival of information, investors frequently
predict futures prices instead of trading volumes to hedge their risk by deciding a particular
position in the market (Go and Lau, 2017). In turn, trading volume still plays a role as an
explicative variable which is a vital source of conditional heteroscedasticity.

As shown in Table 10, the GARCH model estimation in Panel C under three distributional
assumptions shows that the volatility persistence of returns is slightly reduced after incorpo-
rating the lagged of trading volume. However, such a lagged variable does not contribute to
any impact on the conditional variance of returns. As a result, the significant value for GED
parameter remains as 1.9321.

Overall, the degree of leptokurtosis observed in CPO futures returns is typically much greater
than what can be accounted for simply through the observed heteroscedasticity. However, the
conditional heteroscedasticity could not account for some portion of observed leptokurtosis in
the return. For the GARCH model with an exogenous variable, it is found that the presence
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of trading volume in the model with conditional Student-¢ distributed errors could account for
portion of observed leptokurtosis in the return. Such a distributional assumption is better to
model CPO futures returns that exhibit high degree of leptokurtosis and positive skewness.

7. CONCLUSIONS AND IMPLICATIONS

The purpose of this study is to examine the role of trading volume in driving information
transmission channels for CPO futures returns. If trading volume could play such a role, it is
able to account for the uneven flow of information to explain the presence of GARCH effect
in the CPO futures return. Three structural regimes with different degrees of asymmetric
distribution are identified in the movement of returns over January 2000 - April 2017. In each
regime, the extent of response from trading volume to the arrival of new information in the
CPO futures market is examined using the ARMA-GARCH-X model, in which the residuals
follow the normal Student-t and generalised error distributions.

Based on the models, our results provide three notable findings: First, the inclusion of trading
volume reduces volatility persistence of CPO futures returns in Panel A and B, causing the weak
reaction of conditional variance to shocks. This finding is attributed to relatively low response
of futures trading to price sensitivity for which trading volume cannot act as a good proxy for
information flow; Second, the presence of trading volume as an exogenous variable in the model
is found to be important for obtaining the goodness of fit for efficient estimates; Third, we
explore the impact of distributional assumptions on the model fitting process for CPO futures
returns with the inclusion of trading volume. When modelling the CPO futures return that
exhibits high degree of leptokurtosis and positive skewness, Student-t distributional assumption
is found to be an important assumption. By makingsuch an assumption for a modelling purpose
could result in a better conclusion yield from a given GARCH-type model as the parameters
are able to provide more information of the return.

Although trading volume cannot act as a good proxy for information flow, its presence as an
exogenous variable in the GARCH model with conditional Student-t distributed errors could
reduce the degree of potential explosiveness. Based on this, two implications are suggested as
follows. First, practitioners should rely on the pricing of long-term futures contracts which is
a non-trivial function of the current information set to forecast volatility. Indeed, the adverse
growing condition of CPO cannot provide inventories that associate with the long-run supply.
The forecasting of futures volatility can give them insights in allocating their inventories opti-
mally for production and investment in CPO related products. For example, they can use the
futures volatility as an inflation hedge to assess the quality of prices, as well as a predictor of
future CPO prices for investment and hedging decisions.

Second, our study documents whether the inclusion of trading volume into the GARCH mod-
elling could adequately fit the CPO futures returns based on the unobservable information flow.
To account stylized facts such as large kurtosis and positive skewness, our finding demonstrates
the Student-t distibutional assumption is the most appropriately used conditional distribution
in GARCH model with trading volume as an exogenous variable. Therefore, when the CPO
futures return has an overreaction to good news instead of bad news, financial analysts are
suggested to consider trading volume that can help them in assessing risk and measuring the
value-at-risk of their market position.
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