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VALUE AT RISK ESTIMATION FOR NON-GAUSSIAN DISTRIBUTIONS

CODRUŢ FLORIN IVAŞCU AND DANIELA ŞERBAN

Abstract. This paper presents a methodology for computing Value at Risk for �nancial as-
sets that does not follow a normal distribution of return. A back-testing approach have been
applied in order to select the best theoretical non-Gaussian distributions that can explain
the behavior of the empirical data. In this study, Cauchy, Laplace, Logistic and Beta dis-
tributions have been considered. As benchmark, historical distribution, and Extreme Value
Theory (EVT) method have been used. The experiment suggests di¤erences in estimation
of over 5 times between one method and another.

1. Introduction

The e¢ cient measurement of market risk has become crucial given the signi�cant increase of
uncertainty in �nancial markets. The extensive movements of the prices of the �nancial assets
and the intensive use of the derivative instruments determined the need of risk measures capable
of capturing and mitigating the increasingly pronounced market risks. This paper delves into
the heart of market risk � the unanticipated volatility of returns on a portfolio, spurred by
shifts in stock prices, exchange rates, interest rates, and commodity prices. At the core of this
volatility lie the "stylized facts" of �nancial assets, a term coined by Cont (2001) to describe
the empirical regularities in �nancial market data. Among these is the concept of "heavy tails,"
indicative of a greater likelihood of extreme variations in asset returns than predicted by the
normal distribution. This paper explicitly addresses the challenge of measuring risk in the
presence of such heavy-tailed, non-Gaussian distributions.
Contrasting with the Modigliani-Miller theorem of 1958, which posits the irrelevance of risk

management in a perfect market, Bartram (2000) underscored the e¢ cacy of risk management
strategies in the face of market imperfections such as trading costs, asymmetric information,
and tax disparities. Hence, the application of quantitative measures of market risk has be-
come a cornerstone for decision-making processes within �nancial institutions including banks,
investment funds, pension schemes, and hedge funds, as well as non-�nancial entities.
The preeminent measure in this domain is Value at Risk (VaR), though its calculation

remains a subject of debate, lacking a uni�ed methodology (Thompson & McCarthy, 2008).
VaR estimates the maximum loss a portfolio might su¤er within a speci�c time frame, under
a given probability � typically 95% or 99%. Despite its roots in Markowitz�s portfolio theory,
VaR represents a signi�cant departure in several ways, as noted by Dowd (2005):

VaR quanti�es risk in terms of potential loss magnitude, whereas portfolio theory does
so via standard deviation;
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VaR is adaptable to various types of distribution, in contrast to the normal distribution
assumption of portfolio theory;

VaR is applicable across diverse risk types, not just market risk.
Originating at J.P. Morgan in the late 1980s, VaR has since established itself as an industry

benchmark. However, the literature continues to critically assess VaR models, aiming to re�ne
their accuracy and predictive capability. Beder (1995) demonstrated the variability in VaR
estimates across di¤erent models applied to identical portfolios, revealing the sensitivity of VaR
to the chosen data, assumptions, and methodologies. In his conclusions, VaR does not guarantee
a good risk measure, the results varied even fourteen times for the same portfolio.
Küsters, Mittnik, and Paolella (2006) highlight the imperative to evolve VaR models that can

reliably predict risk in alignment with emergent regulatory demands. Their comparative study
of conditional and unconditional VaR models, when applied to the NASDAQ index, reveals a
consistent underestimation of market risks, casting doubt on the models�precision.
Further scrutiny by Giamouridis and Ntoula (2009) compares the e¤ectiveness of historical

and parametric approaches, extending their investigation to include both normal distributions
and Cornish-Fisher expansions, as well as the generalized Pareto distribution. Their �ndings
indicate that distributions accommodating the heavy tails and asymmetry of �nancial returns
o¤er superior performance over traditional Gaussian and historical models, especially at the
critical 1% threshold. At a less stringent 5% level, the various models tend to converge in terms
of output.
After the global �nancial crisis of 2007-2009, more strict assessments of �nancial risk have

been imposed by Basel III or Solvency II regulations. The backtesting literature has since
gained traction after the development of the Unconditional Coverage (UC) backtest by Kupiec
(1995), these include the works from Ziggel et al. (2014) and Wied et al. (2016).
In line with previous work, recent papers like Allen et al (2020) shows that even if we are

using conditional volatility approach such as EWMA, the Gaussian approaches systematically
underestimate tail risk. Moreover, they showed that the most widely used approach in practice,
Historical Simulation, leads to too many consecutive VaR violations out-of-sample. This is
problematic, as in times of market stress it may not be feasible to increase capital bu¤ers.
Khindanova and Rachev (2019) conclude that adequate approximation of distributional forms
of returns is a key condition for accurate VAR estimation. Given the leptokurtic nature (heavy
tails and excess kurtosis) of empirical �nancial data, the Pareto distributions seem to be the
most appropriate distributional models for returns.
However, rather than presupposing the preeminence of any particular distribution, this study

rigorously examines an expansive array of 61 theoretical distributions. The objective is not to
validate the supremacy of Pareto distributions but to empirically determine which distribu-
tion most accurately encapsulates the behavior of �nancial returns and thereby enhances the
precision of VaR estimates.
The investigation unveils a robust �tness methodology along with a versatile back-testing

protocol that can be employed for any chosen distribution. The emphasis here is on the practi-
cality and replicability of the methods, ensuring their accessibility and utility in diverse �nancial
contexts. A case study analyzing the daily returns of a government security serves as the initial
application of this methodology, yet the framework is designed with the �exibility to be adapted
to a multitude of �nancial instruments.
Section 2 delineates the speci�cations of the VaR model, setting the stage for a deeper

exploration. Section 3 details the employed methodology, capturing both the computation of
VaR and the process for identifying and evaluating the theoretical distributions. The robustness
of VaR calculations is also scrutinized within this part of the discourse. Section 4 is devoted
to the presentation of the test results, demonstrating the e¢ cacy of the distributions under
examination. Finally, Section 5 culminates with a comprehensive summary of the �ndings and
their implications for risk assessment in �nancial markets.
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2. Model specifications

The huge popularity behind VaR is mainly due to its conceptual simplicity in aggregating
the risk of a portfolio into a single number that can be easily used in board meetings, reported
to regulators or presented to the public in an annual report. VaR can measure risk regardless
of position, for almost any type of assets and risk factors (not just market risk) and o¤ers a
monetary and probabilistic expression of the possible loss.
Despite some problems, VaR can be used in several ways: (i) management can set a target risk

and determine the appropriate position; (ii) VaR can be used to determine capital requirements,
especially in the context of Basel and Solvency, but not only; (iii) VaR is used in reporting
to the public; (iv) May be the basis of investment decisions. hedging, trading, and portfolio
management; (v) it may be used as a rule in the remuneration of traders and managers. (Dowd,
2005)
The Bank for International Settlements (BIS) utilizes VaR in ascertaining capital bu¤ers

for �nancial market activities. The imperative for precise risk estimation is clear: inaccuracies
can lead to either excess or de�cient capital requirements, impacting the judicious allocation of
�nancial resources.
VaR computation is diverse, with each methodology re�ecting distinct presumptions, strengths,

and limitations. Among these, traditional methods remain prevalent:

2.1. Historical approach. The most common nonparametric approach is historical simula-
tion. In this approach it is considered that the historical distribution of the return is also
relevant for its future distribution. VaR is estimated directly from the data without the need
to derive parameters from other hypotheses. For example, considering 100 historical returns
of the portfolio, VaR (95%) will be the value under the 5th lowest observation. However, this
method assumes that returns are independently and identically distributed (IID), performing
reliably only in the absence of signi�cant volatility shifts. There are also di¤erent extensions
of the model that assume an average weight with the volatility or the value of the most recent
data.

2.2. Parametric method (under a normal distribution). This method considers that the
return is normally distributed, and VaR is calculated using Gaussian distribution quantiles.
The limitations of the method are obvious, since it is known that the return is not an IID, with
many extreme values being recorded. The kurtosis of a �nancial series has values between 4 -
50, while the normal distribution implies a kurtosis of 3. (Cont, 2001; Kuesters et al, 2006)
VaR is computed as:

V aR(�) = ��+ � � q_z(�)
where q_z(�) is the value of standard normal distribution and � and � are the mean and

standard deviation of the distribution.

2.3. Monte-Carlo simulation. The third method is similar to the historical method but
involves the development of a model that simulates the future pro�tability of the asset. The
hypothetical data are used to generate a theoretical distribution, not an empirical one. The
main hypothesis assumes that the new distribution estimates or approximates the price behavior
su¢ ciently well.

2.4. Mathematical estimation. This method is based on estimating Value at Risk using its
mathematical de�nition. Given a con�dence level � = (0.1) (usually 0.95 or 0.99) and de�ning
an investment horizon T and a random variable L of the portfolio loss, VaR is de�ned as:

V aR� (L) := inffl 2 R : P (L � l ) � �g
or

V aR� (L) = min fzj FL (z) � �g
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Among critics, Taleb (1997) suggests that (1) VaR has a dangerous potential and that it is
often invalid in the real world. (2) Too much reliance on VaR can result in a very large loss.
(2) VaR cannot determine losses over a certain probability. (3) It is not a coherent measure
because it is not an additive measure, this being the most important limitation.
In addressing the limitations of the Value-at-Risk (VaR) methodology, it is also crucial to

delineate the concepts of risk and uncertainty. Risk pertains to situations where the probabil-
ities of outcomes are known and can be described by a probability distribution, allowing for
quanti�able and often predictable risk management. Uncertainty, however, refers to the inabil-
ity to predict outcomes due to unknown probabilities or the absence of information, which is
not adequately captured by traditional VaR models. As highlighted by Alexander and Sara-
bia (2012), VaR can signi�cantly underestimate the risk in the presence of model risk, which
emerges from the reliance on potentially incorrect or overly simplistic assumptions, such as the
normal distribution of �nancial returns. This misrepresentation leads to an underestimation of
tail risk and a failure to account for extreme market events.

3. Data and Methodology

3.1. Data description. In the realm of �nance, banks are prominent users of Value at Risk
(VaR) methodologies, largely driven by regulatory imperatives to manage and report on the
levels of risk within their portfolios. Bonds, as a staple component of bank portfolios, represent
an area of signi�cant interest for VaR analysis. The choice to focus on a bond for this analysis
aligns with the objective to re�ect the risk assessment practices within banking institutions
where �xed-income securities such as bonds form a substantial part of the asset mix.
For this study, the chosen time series is based on the daily historical prices of a speci�c bond,

RO1227DBN011, issued by the Romanian Ministry of Finance. This dataset, sourced from
Thomson Reuters, spans from March 23, 2014, to October 23, 2020, o¤ering a comprehensive
view over various market conditions.
To ensure a thorough examination of the VaR model�s e¤ectiveness, the dataset will be

divided into two distinct intervals: an in-sample period and an out-of-sample period. The in-
sample segment will comprise 80% of the dataset, which equates to 1,317 observations, while
the out-of-sample segment will contain the remaining 330 observations. This division allows for
the assessment of the model�s predictive accuracy and robustness by �rst establishing the model
with the in-sample data and subsequently validating it against the out-of-sample data. The
analyses will concentrate on the daily percentage change in the bond�s price, acknowledging
that while the study is centered on a bond, the methodology is versatile and can be applied to
any �nancial asset to evaluate its risk pro�le.

3.2. Methodology description. The methodology employed in this study centers on calcu-
lating Value at Risk (VaR) with a focus on non-Gaussian distributions, diverging from the
common assumption that �nancial returns follow a normal distribution. The initial step in-
volves identifying a theoretical distribution that closely mirrors the empirical distribution of
the data in question. To achieve this, the EasyFit (version 3.0) software was utilized, which
applies the Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared tests to determine the
most suitable �t. Out of 61 theoretical distributions tested, the top four, as determined by
their �tness scores, were selected for further scrutiny.
To ensure the robustness of the selected distributions, �tness tests were conducted for both

in-sample and out-of-sample periods. For the latter, an adjustment was made where the earliest
330 observations were excluded, and the subsequent out-of-sample observations were incorpo-
rated, ensuring that the comparison was based on an equivalent data set of 1317 points for each
distribution.
Once the theoretical distribution was ascertained, the next step involved calculating the

VaR for the out-of-sample period. This was achieved by employing the probability density
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function (pdf) parameters, which were computed using the scipy.stats library (v1.11.3) within
the Python (3.6) programming environment.
With a speci�ed con�dence level� 95% and 99%� the study proceeded to calculate VaR

through numerical approximation of the integral, facilitated by functions available in the scipy.
integrate library (v1.11.3). The VaR value at which the integrated area of the density func-
tion corresponds to the desired con�dence level was determined using the scipy.optimize.fsolve
function (v1.11.3), which identi�es the minimum value where the cumulative density function
equals or exceeds the given probability threshold.
For the purposes of this research, VaR was calculated at �ve-day intervals, employing a

rolling window of the most recent 250 observations, and considering a standardized investment
of one monetary unit. The validity of the calculated VaR �gures was further tested through a
rigorous back-testing methodology, thereby reinforcing the credibility of the �ndings.

3.3. Back - Testing. To evaluate the accuracy of the VaR model presented in this paper,
three tests will be performed to examine whether the model is correctly speci�ed or not. To
determine if the selected distribution is indeed robust, we will use the back-testing procedure
for out of sample data. A starting point is a so-called indicator function:

It =

�
1; if rt � V aRt
0; if rt > V art

In order to be considered correct, the indicator function must ful�ll two properties presented
by Christo¤ersen (1998):

(1) the unconditional coverage property assumes that It takes the value of 0 exactly (1-�)
* 100 in cases. If it is 0 less times, the model is too conservative.

(2) the independence property assumes that two consecutive elements of the indicator must
be independent of each other. If the condition is not met, the model will not be very
to catch the changes in the market. According to Campbell (2005), It must be iid with
a Bernoulli random variable with probability p.

The �rst test is the Kupiec test (1995) for unconditional coverage. It tests that the maximum
likelihood function is asymptotically distributed �2(1). Once de�ned It, the likelihood function
is:

L (p; I1; I2; : : : ; IT ) = (1� p)n0pn1

Where p is the probability under which we calculate VaR (ex 0.95%).We de�ne p̂ = n1
n0+n1

to be the empirical probability obtained (Christo¤ersen, 1998, p. 845). The number of cases in
which the restriction of rt � V aRt was not violated (or violated) is given by n1 (n0). Testing
for unconditional coverage is done through a simple log-likelihood ratio:

LRUC = �2ln
�
L (p; I1; ::; In)

L (p̂; I1; ::; In)

�
= �2ln

�
(1� p)n0pn1
(1� p̂)n0 p̂n1

�
� �2(1)

Under the null hypothesis, LR is in the interval:

chiinv
�
1� p

2
; 1
�
� LRUC � chiinv

�p
2
; 1
�

Kupiec�s test is not su¢ cient to explain whether the breach cases are id or grouped. Christof-
fersen (1998) suggests a plausibility test for both unconditional coverage (UC), but also for the
value of independence (ind) and conditional coverage (CC). The UC test is similar to Kupiec�s.

LRind = �2ln
 

(1� �2)n00+n11�n01+n112

(1� �01)n00�n1101 (1� �11)
n10�n1111

!
� �2(1)

where �01 =
n01

n00 + n01
;�11 =

n11
n01 + n11

;�2 =
n01 + n11

n00 + n10 + n01 + n11
Here, nij is the number of observations with the value I at t� 1 followed by j at the moment

t (1 if the relationship is broken and 0 if the loss is smaller than VaR). Christo¤erson (1998).
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Christo¤erson (1998) demonstrates that ignoring the �rst observation there is a numerical
relationship between LRUC si LRind. In his work he also shows that the distribution of the
conditional coverage test is asymptotic �2 with 2 degrees of freedom:

LRCC = LRUC + LRind � �2(2)

Thus, H0 is not rejected for a signi�cance degree p = 1� � if:

chiinv
�
1� p

2
; 2
�
� LRCC � chiinv(

p

2
; 2)

This test is used in the present paper as the main indicator in testing the adequacy of the
model.

4. Results

4.1. Fitting. The results presented in Figures 1 and 2, along with Table 1, encompass the
outcome of �tting of the best four statistical distributions (out of 61) to empirical data for both
in-sample and out-of-sample periods. These �gures reveal the probability density functions
overlaid on the actual data distributions. In the case of the in-sample period, as depicted
in Figure 1, the Cauchy distribution exhibits the closest alignment with the empirical data,
indicating its superior �t over other distributions such as Laplace, Logistic, and Beta. The
empirical distribution�s left tail mass and the signi�cant tails of the Cauchy distribution are
particularly noteworthy, suggesting a pronounced presence of outliers or extreme values in the
data set.

Table 1 - Goodness of �t score for the best 4 distributions
In sample Out-of-sample

Cauchy Kolmogorov-Smirnov Statistic 0.03 0.04
P-Value 0.08 0.02

Anderson-Darling Statistic 4.27 5.03
Chi-squared Statistic 39.56 36.66

P-Value 0.00 0.00
Laplace Kolmogorov-Smirnov Statistic 0.06 0.05

P-Value 0.00 0.00
Anderson-Darling Statistic 10.64 5.66
Chi-squared Statistic 75.36 34.80

P-Value 0.00 0.00
Logistic Kolmogorov-Smirnov Statistic 0.10 0.09

P-Value 0.00 0.00
Anderson-Darling Statistic 30.22 20.14
Chi-squared Statistic 255.00 169.45

P-Value 0.00 0.00
Beta Kolmogorov-Smirnov Statistic 0.12 0.11

P-Value 0.00 0.00
Anderson-Darling Statistic 44.80 32.30
Chi-squared Statistic 370.61 259.36

P-Value 0.00 0.00

The out-of-sample period, illustrated in Figure 2, continues to show the Cauchy distribution
as the best �t among the chosen models. This is further corroborated by Table 1, where
goodness-of-�t tests� namely, the Kolmogorov-Smirnov, Anderson-Darling, and Chi-squared
tests� are detailed. Across these tests, we notice that while all distributions pass the goodness-
of-�t criteria, the Cauchy distribution generally presents the lowest statistics (indicating a better
�t) and acceptable p-values, especially notable at the 95% con�dence level. This trend suggests
that while other distributions may still provide a reasonable model of the data, the Cauchy
distribution consistently emerges as the best descriptor of the empirical distribution�s behavior.
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Figure 1 - Probability density function for the in-sample period

Figure 2 - Probability density function for the out-of-sample period

Interestingly, despite the robust �tting of the Cauchy distribution within the body of the
data, Figure 3�s Q-Q plot elucidates that it does not e¤ectively capture the tail events. The
Cauchy distribution overestimates both the potential maximum losses and pro�ts, leading to
the anticipation of a higher Value at Risk (VaR) when this distribution is employed. This aspect
is crucial for risk management purposes, as it implies that using the Cauchy distribution for
VaR calculations could result in more conservative risk estimates, potentially leading to higher
capital reserves or reduced risk-taking than might be justi�ed by the empirical data.
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Figure 3 - Q-Q Plot for the selected distributions

4.2. Back-Testing. Back-testing results are shown in the Table 2. Cauchy and Laplace distri-
butions pass the Kupiec test for both 95% and 99% probability and Logistic, and Beta distri-
butions only for 95%. However, none of the distributions pass the Christo¤ersen test because
the value of independence test (LR ind) is too high. This means that VaR is not independent
and does not have an identical distribution through time, being an ine¢ cient measure in the
case of a big disruption in the market.

Table 2 - Backtesting results for selected distributions
Distrib. Prob. Kupiec test Indep. test Christo¤ersen test

Con�dence interval LR(UC) LR(Ind) Con�dence interval LR(CC)
bound bound

lower upper lower upper
Cauchy 95% 0.000982 5.023886 4.2675 43.5830 0.050635 7.377758 47.8506

99% 0.000392 7.879438 6.6332 23.1250 0.010025 10.59663 30.7560
Laplace 95% 0.000982 5.023886 2.4138 77.5180 0.050635 7.377758 79.9318

99% 0.000392 7.879438 4.8362 38.2695 0.010025 10.59663 43.1058
Logistic 95% 0.000982 5.023886 4.0083 83.6510 0.050635 7.377758 87.6593

99% 0.000392 7.879438 16.5375 54.4794 0.010025 10.59663 71.0170
Beta 95% 0.000982 5.023886 0.3809 63.9379 0.050635 7.377758 64.3188

99% 0.000392 7.879438 11.2703 53.4783 0.010025 10.59663 64.7486

Since the other distributions tested do not capture very well the events with low probability
of occurrence, as comparison, the Value at Risk was calculated using also extreme value theory
(EVT). This model the extreme events in the distribution tails (> 95%) using a Generalized
Pareto distribution. The value at risk thus calculated is an improvement of the historical VaR,
much better surprising the events in the tails. A comprehensive description of the calculation
method can be found in Fabozzi (2015).

4.3. Evolution of Value at Risk.
Table 3 - Evoluton of VaR in the out-of-sample period

Value at risk was recalculated every 5 days using a 250-day rolling window. One can easily
observe (Table 3) the very conservative behavior of the Cauchy distribution identi�ed in the
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case of QQ-plot. Its very long tails determine a VaR calculated at the probability of 99% up
to 5.7 times higher than for the other distributions. The Cauchy distribution�s conservative
nature at the 99% level is notable when compared to its 95% level estimates, which are much
less conservative and more in line with other distributions.
Additionally, the Extreme Value Theory (EVT) method also produces a conservative VaR

estimate, albeit not as extreme as the Cauchy distribution. The EVT�s VaR at the 99% con�-
dence level is noted to be up to three times higher than the historical VaR. This conservative
estimation is crucial because EVT is designed to assess risk based on the extreme values within
a dataset, which are often the focus of risk management practices.
Most other distributions, including Laplace, Logistic, and Beta, along with the historical

method, show their 99% VaR estimates within a narrow range (0.6% - 0.8%). The proximity of
these values suggests that, aside from the Cauchy and EVT methods, there is little variability
between the di¤erent distribution methods at the 99% con�dence level. At the 95% con�dence
level, there is an even smaller di¤erence between the VaR estimates of various distributions,
as shown by their minimal variances. This suggests that for less extreme risk assessments, the
choice of distribution may have a smaller impact on the VaR estimate. The historical method�s
variance at both the 99% and 95% levels is higher than most parametric methods, indicating
more �uctuation in its VaR estimates. This could be due to the historical method�s direct
reliance on past data, which can be highly variable.

5. Conclusions

In this study, we explored the computation of Value at Risk (VaR) for a �nancial asset with
non-normal return distributions. By leveraging EasyFit software, 61 theoretical distributions
were �tted to empirical data, with the Cauchy, Laplace, Logistic, and Beta distributions emerg-
ing as the most suitable based on various goodness-of-�t tests including Kolmogorov-Smirnov,
Anderson-Darling, and Chi-squared.
Our analysis extended to the assessment of VaR robustness via Back-Testing methods, ap-

plying both Kupiec and Christo¤ersen tests. It was observed that while most distributions
satisfactorily passed the Kupiec unconditional coverage test at 95% and 99% con�dence levels,
the Christo¤ersen test of independence posed a signi�cant challenge, with none of the dis-
tributions meeting the stringent criteria. This suggests that the independence test may be
overly stringent, pointing to a need for further evaluation of its applicability in practical risk
management contexts.
A notable �nding was the conservatively high VaR results calculated using the Cauchy dis-

tribution, which were as much as 5.7 times greater than those estimated by other distributions,
emphasizing the Cauchy distribution�s sensitivity to tail events. In contrast, VaR values es-
timated by the Extreme Value Theory (EVT) were found to be up to threefold higher than
those derived from historical methods. The other distributions examined provided VaR esti-
mates closely aligned with historical VaR, underscoring a potential preference for simpler, more
traditional approaches in certain risk assessment scenarios.
Given the diversity of results observed across di¤erent computation methods, it�s apparent

that a one-size-�ts-all approach to VaR estimation may not be feasible. The �ndings of this
study intersect with the literature in several key areas. Allen et al. (2020) emphasize the un-
derestimation of tail risk in Gaussian approaches and the inadequacies of Historical Simulation,
which our analysis con�rms. Similarly, our observations resonate with the concerns raised by
Khindanova and Rachev (2019) regarding the criticality of selecting appropriate distributional
models to achieve accurate VaR estimations. However, this study diverges from the conventional
presumption of the superiority of any given distribution, such as Pareto distribution. Notably,
the Pareto distribution did not rank among the top four distributions that were identi�ed as
the best �ts and selected for more in-depth analysis.
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Looking forward, this research could be expanded to encompass comparative analyses across
various classes of �nancial assets. Such studies could ascertain the relative merits of non-
Gaussian distribution models over traditional methods for VaR calculations. Also, more analysis
could suggest a distribution that may be satisfactory applied to most �nancial assets. Mean-
while, the signi�cant variations in VaR estimates identi�ed in this study indicate a pressing
need for the �nance community to re�ne risk assessment models, ensuring that risk managers
have at their disposal the most reliable and accurate tools for managing �nancial risk.
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